Садохин А. Концепции современного естествознания

ОГЛАВЛЕНИЕ

Глава 2 Структура и методы научного познания

2.1. Уровни и формы научного познания Уровни научного познания

В современном естествознании обычно выделяют эмпирический и теоретический уровни познания.

Эмпирический уровень познания. На эмпирическом (опытном) уровне познания используются главным образом методы, опирающиеся на чувственно-наглядные приемы и способы познания, такие, как систематическое наблюдение, сравнение, аналогия и т.д. Здесь накапливается первичный опытный материал, который требует дальнейшей обработки и обобщения. На данном уровне познание имеет дело с фактами и их описанием. Вся научная информация основана на наблюдениях и подвергается объективной проверке. Непосредственные наблюдения ограничиваются только ощущениями, полученными от пяти органов чувств. Эти данные можно проверить, поскольку наши органы чувств могут обманываться и предоставлять нам неверную информацию.

К сожалению, сами по себе эмпирические факты и обобщения мало что объясняют. Можно сделать наблюдение, что на Земле любой предмет (а не только яблоки) будет падать сверху вниз. Но еще один непреложный факт — то, что звезды и планеты, которые мы можем увидеть у себя над головой, на Землю не падают. Выявить разницу между этими событиями, а также объяснить их причину на уровне эмпирического обобщения невозможно. Чтобы это понять, нужно пойти дальше и перейти с эмпирического на теоретический уровень познания.

Теоретический уровень познания. Только на этом уровне становится возможным формулирование законов, являющееся целью науки. Для этого нужно уметь увидеть за многочисленными, часто совершенно непохожими внешне фактами, именно существенные, а не просто повторяющиеся свойства и характеристики предметов и явлений.

Главная задача теоретического уровня познания заключается в том, чтобы привести полученные данные в стройную систему и

20

создать из них научную картину мира. Для этого отдельные чувственные данные складываются в одну целостную систему — теорию Но при построении теории используются другие, более высокие методы познания — теоретические.

Теоретический уровень познания обычно расчленяется на два типа — фундаментальные теории и теории, которые описывают конкретную область реальности. Так, механика описывает материальные точки и взаимоотношения между ними, а на основе ее принципов строятся различные конкретные научные теории, описывающие те или иные области реального мира.

При всех различиях между эмпирическим и теоретическим уровнями познания нет непреодолимой границы: теоретический уровень опирается на данные эмпирического, а эмпирическое знание не может существовать без теоретических представлений, оно обязательно погружено в определенный теоретический контекст.

Формы научного познания

К основным формам научного познания относятся научные факты, проблемы, гипотезы и теории. Их назначение состоит в том, что они раскрывают динамику процесса познания, т.е. движение и развитие знания в ходе исследования или изучения какого-либо объекта.

Фундаментом всего научного знания являются научные факты, с установления которых начинается научное познание. Научный факт — это отражение конкретного явления в человеческом сознании, т.е. его описание с помощью языка науки (обозначение, термины и т.п.). Одним из важнейших свойств научного факта является его достоверность, которая обусловливается возможностью его воспроизведения с помощью различных экспериментов. Чтобы факт считался достоверным, требуется его подтверждение в ходе многочисленных наблюдений или экспериментов. Так, если мы один раз увидели, что яблоко с дерева падает на землю, то это всего лишь единичное наблюдение. Но если мы фиксировали подобные падения неоднократно, то можно говорить о достоверном факте. Подобные факты составляют эмпирический, т.е. опытный, фундамент науки.

Трудность заключается в том, что в непосредственном наблюдении зафиксировать сущностные характеристики предмета практически невозможно. Поэтому прямо перейти с эмпирического на теоретический уровень познания тоже нельзя. Теория не строится путем непосредственного индуктивного обобщения опыта. Поэтому следующим шагом в научном познании становится формулирование проблемы.

Проблема определяется как «знание о незнании», как форма знания, содержанием которой является осознанный вопрос, для ответа на который имеющихся знаний недостаточно. Любое научное исследова-

21

ние начинается с выдвижения проблемы, что свидетельствует о возникновении трудностей в развитии науки, когда вновь обнаруженные факты не удается объяснить существующими знаниями. Поиск, формулирование и решение проблем — основная черта научной деятельности. Проблемы отделяют одну науку от другой, задают характер научной деятельности как подлинно научной или псевдонаучной.

В свою очередь, наличие проблемы при осмыслении необъяснимых фактов влечет за собой предварительный вывод, требующий своего экспериментального, теоретического и логического подтверждения. Такого рода предположительное знание, истинность или ложность которого еще не доказана, называется научной гипотезой.

Гипотеза — это знание в форме предположения, сформулированного на основе ряда достоверных фактов.

По своему происхождению гипотетическое знание носит вероятностный, а не достоверный характер и поэтому требует обоснования и проверки. Если в ходе проверки содержание гипотезы не согласуется с эмпирическими данными, то гипотеза отвергается. Если же гипотеза подтверждается, то можно говорить о той или иной степени вероятности гипотезы. Чем больше фактов, подтверждающих гипотезу, найдено, тем выше ее вероятность. Таким образом, в результате проверки одни гипотезы становятся теориями, другие уточняются и конкретизируются, а третьи отбрасываются как заблуждения, если их проверка дает отрицательный результат. Решающим критерием истинности гипотезы является практика во всех своих формах, а вспомогательную роль при этом играет логический критерий истины.

Выдвижение гипотез — один из самых сложных моментов в науке. Ведь они не связаны прямо с предшествующим опытом, который лишь дает толчок к размышлениям. Огромную роль играют интуиция и талант, отличающие настоящих ученых, имена которых нам известны из школьных учебников. Интуиция важна так же, как и логика. Ведь рассуждения в науке не являются доказательствами, это только выводы, которые свидетельствуют об истинности рассуждений, если посылки верны, но они ничего не говорят об истинности самих посылок. Выбор посылок связан с практическим опытом и интуицией ученого, который из огромного множества эмпирических фактов и обобщений должен выбрать действительно важные. Затем ученый должен выдвинуть предположение, объясняющее эти факты, а также целый ряд явлений, еще не зафиксированных в наблюдениях, но относящихся к этому же классу событий. При выдвижении гипотезы принимается во внимание не только ее соответствие эмпирическим данным, но и требования простоты, красоты и экономичности мышления.

22

В случае своего подтверждения гипотеза становится теорией.

Теория — это логически обоснованная и проверенная на практике система знаний, дающая целостное отображение закономерных и существенных связей в определенной области объективной реальности.

Главная задача теории — описать, систематизировать и объяснить все множество эмпирических фактов. Иными словами, теория представляет собой систему истинного, уже доказанного, подтвержденного знания о сущности явлений, высшую форму научного знания, всесторонне раскрывающую структуру, функционирование и развитие изучаемого объекта, взаимоотношения всех его элементов, сторон и связей.

Научная теория — это развивающаяся система знания, главными элементами которой являются принципы и законы. Принципы — это наиболее общие и важные фундаментальные положения теории. В теории принципы играют роль исходных, основных и первичных посылок, образующих фундамент теории. В свою очередь, содержание каждого принципа раскрывается с помощью законов, которые конкретизируют принципы, объясняют механизм их действия, логику взаимосвязи вытекающих из них следствий. На практике законы выступают в форме теоретических утверждений, отражающих общие связи изучаемых явлений, объектов и процессов.

Раскрывая сущность объектов, законы их существования, взаимодействия, изменения и развития, теория позволяет объяснять изучаемые явления, предсказывать новые, еще не известные факты и характеризующие их закономерности, прогнозировать поведение изучаемых объектов в будущем. Таким образом, теория выполняет две важнейшие функции: объяснение и предсказание, т.е. научное предвидение.

2.2. Методы научного познания

Процесс познания окружающего нас мира в самом общем виде представляет собой решение разного рода задач, возникающих в ходе практической деятельности человека. Эти проблемы решаются путем использования особых приемов — методов.

Научный метод — это совокупность приемов и операций практического и теоретического познания действительности.

Они оптимизируют деятельность человека, вооружают его наиболее рациональными способами организации деятельности.

23

На эмпирическом уровне происходит сбор фактов и информации (установление фактов, их регистрация, накопление), а также их описание (изложение фактов и их первичная систематизация).

Теоретическая сторона связана с объяснением и обобщением фактов, созданием новых теорий, выдвижением гипотез, открытием новых законов, а также предсказанием новых фактов в рамках этих теорий. С их помощью вырабатывается научная картина мира, что важно для осуществления мировоззренческой функции науки.

В основе методов науки лежит единство эмпирических и теоретических сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв, или преимущественное развитие одной стороны за счет другой, закрывает путь к правильному познанию природы: теория становится беспредметной, опыт — слепым.

Помимо выделения двух уровней познания, в основу классификации научных методов может быть положена применяемость метода, возможность его использования в разных сферах человеческой деятельности. В таком случае можно выделить общие, особенные и частные методы научного познания.

Общие методы научного познания

Общие методы познания касаются любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени. Это, скорее, общефилософские методы познания. В истории философии можно найти только два таких метода — метафизический и диалектический. До конца XIX в. в науке господствовал метафизический метод, и лишь с XX в. он уступил свое место диалектическому методу познания. Оба этих метода лишь намечают границы познания.

Частные методы научного познания

Частные методы научного познания — это специальные методы, действующие только в пределах отдельной отрасли науки. Таков, в частности, метод кольцевания птиц, применяемый в зоологии. Иногда частные методы могут использоваться за пределами той области знания, в которой они возникли. Так, методы физики, применяемые в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и других междисциплинарных наук. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.

Хотя частные методы и способы исследования в разных науках могут заметно отличаться друг от друга, однако общий подход этих

24

методов к процессу познания остается в сущности одним и тем же. Все они определяют тактику исследования. Стратегию исследования определяют особенные методы познания. Кроме того, все частные методы познания связаны с определенными сторонами или сочетаниями особенных методов.

Особенные методы научного познания

Особенные методы научного познания используются большинством наук на разных этапах познавательной деятельности и касаются определенной стороны изучаемого предмета или приема исследования. Именно среди особенных методов можно выделить эмпирический и теоретический уровни познания. Таким образом, существуют особенные методы, проявляющиеся:

  • на эмпирическом уровне познания (особенные эмпирические методы);

  • на теоретическом уровне познания (особенные теоретические методы);

  • методы, действующие как на эмпирическом, так и на теоретическом уровнях познания (особенные универсальные методы).

Остановимся подробнее на этих трех группах особенных методов научного познания.

2.3. Особенные эмпирические методы научного познания

К особенным эмпирическим методам научного познания относятся наблюдение, измерение и эксперимент.

Наблюдение

Наблюдение — это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены.

Сущностью наблюдения является чувственное отражение предметов и явлений объективного мира, в ходе которого мы получаем некую первичную информацию о них. Поэтому исследование любых интересующих объектов окружающего нас мира чаще всего начинают с наблюдения, и лишь затем переходят к другим методам изучения.

Результаты наблюдения должны фиксироваться в описании, отмечающем те свойства и стороны изучаемого объекта, которые яв-

25

ляются предметом исследования ученого. Такое описание должно быть максимально полным, точным и объективным. Ведь оно должно дать достоверную и адекватную картину изучаемого явления. Именно описания результатов наблюдений составляют эмпирический базис науки, на их основе создаются эмпирические обобщения, систематизации и классификации.

Измерение

Измерение — это определение количественных значений (характеристик) изучаемых сторон или свойств объекта исследования с помощью специальных технических устройств.

Эти устройства могут работать как в руках человека, так и в автоматическом режиме. Современные компьютеры позволяют проводить не только процедуру измерения, но и обрабатывать полученные данные.

Большую роль в исследовании играют единицы измерения — эталоны, с которыми сравниваются полученные данные. Они могут быть основными, или базисными, и производными, выводимыми из них с помощью математических операций.

За последние четыре века бурного развития естествознания образовалось множество различных систем единиц измерения, что затрудняло работу ученых. Поэтому в 1960 г. Генеральная конференция по мерам и весам приняла Международную систему единиц — СИ. Она базируется на семи основных (метр (м) — единица длины, килограмм (кг) — единица массы, секунда (с) — единица времени, ампер (А) — сила электрического тока, кельвин (К) — термодинамическая температура в градусах, кандела (кд) — сила света, моль — количество вещества) и двух дополнительных (радиан (рад) — плоский угол, стерадиан (ср) — телесный угол) единицах. Сегодня большая часть измерительных приборов градуируется в этих единицах.

На основании данных единиц измерения введены производные единицы — площади, объема, частоты, скорости, ускорения и др.

Развитие науки немыслимо без развития измерительной техники. Можно говорить как о совершенствовании давно известных приборов, так и о появлении принципиально новых инструментов, сконструированных на основе недавно появившихся в науке гипотез и теорий.

Частным случаем измерения является сравнение. Оно позволяет оценить различные объекты и соотнести их друг с другом.

26

Эксперимент

Эксперимент — более сложный метод эмпирического познания по сравнению с наблюдением, без которого он не обходится.

Эксперимент — это целенаправленное и строго контролируемое воздействие исследователя на интересующий его объект для изучения различных его сторон, связей и отношений.

Таким образом, в ходе эксперимента ученый может вмешиваться в естественный ход процессов, преобразовывать объект исследования, помещать его в искусственные условия.

Специфика эксперимента состоит также в том, что он позволяет увидеть объект или процесс в «чистом» виде за счет максимального исключения воздействия посторонних факторов. Ведь в обычных условиях все природные процессы крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому экспериментатор отделяет существенные факторы от несущественных и тем самым значительно упрощает ситуацию. Такое упрощение способствует более глубокому пониманию сути явлений и процессов и дает возможность контролировать немногие важные для данного эксперимента факторы и величины.

2.4. Особенные теоретические методы научного познания

Абстрагирование, идеализация, формализация

К особенным методам научного познания относятся процедуры абстрагирования и идеализации, в ходе которых образуются научные понятия.

Абстрагирование — мысленное отвлечение от всех свойств, связей и отношений изучаемого объекта, которые представляются несущественными для данной теории.

Результат процесса абстрагирования называется абстракцией. Примером абстракций являются такие понятия, как точка, прямая, множество и т.д.

Идеализация — это операция мысленного выделения какого-либо одного, важного для данной теории свойства или отношения (не обязательно, чтобы это свойство существовало реально), и мысленного конструирования объекта, наделенного этим свойством.

27

Именно посредством идеализации образуются такие понятия, как «абсолютно черное тело», «идеальный газ», «атом» в классической физике и т.д. Полученные таким образом идеальные объекты в действительности не существуют, так как в природе не может быть предметов и явлений, имеющих только одно свойство или качество. В этом состоит главное отличие идеальных объектов от абстрактных.

Формализация — использование специальной символики вместо реальных объектов.

Ярким примером формализации является широкое использование математической символики и математических методов в естествознании. Формализация дает возможность исследовать объект без непосредственного обращения к нему и записывать полученные результаты в краткой и четкой форме.

Индукция

Индукция — метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента, получение общего вывода на основании частных посылок, движение от частного к общему.

Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Но в окружающем нас мире не так много подобных объектов одного класса, число которых ограниченно настолько, что исследователь может изучить каждый из них.

Поэтому гораздо чаще ученые прибегают к неполной индукции, которая строит общий вывод на основании наблюдения ограниченного числа фактов, если среди них не встретились такие, которые противоречат индуктивному умозаключению. Например, если ученый в ста или более случаях наблюдает один и тот же факт, он может сделать вывод, что этот эффект проявится и при других сход ных обстоятельствах. Естественно, что добытая таким путем истин неполна, полученное знание носит вероятностный характер и тре бует дополнительного подтверждения.

Дедукция

Индукция не может существовать в отрыве от дедукции.

Дедукция — метод научного познания, представляющий собой получение частных выводов на основе общих знаний, вывод от общего к частному.

28

Дедуктивное умозаключение строится по следующей схеме: все предметы класса А обладают свойством В, предмет а относится к классу А; следовательно, а обладает свойством В. Например: «Все люди смертны»; «Иван — человек»; следовательно, «Иван — смертен».

Дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Поэтому она не может существовать в отрыве от индукции. Как индукция, так и дедукция незаменимы в процессе научного познания.

Гипотеза

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории.

Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании.

Поэтому гипотеза — это не достоверное, а вероятное знание, истинность или ложность которого еще не установлена.

2.5. Особенные универсальные методы научного познания

К универсальным методам научного познания относятся аналогия, моделирование, анализ и синтез.

Аналогия

Аналогия — метод познания, при котором происходит перенос знания, полученного при рассмотрении какого-либо одного объекта, на другой, менее изученный, но схожий с первым объектом по каким-то существенным свойствам.

Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, причем сходство устанавливается в результате

29

сравнения предметов между собой. Таким образом, в основе метода аналогии лежит метод сравнения.

Применение метода аналогии в научном познании требует определенной осторожности. Дело в том, что можно принять чисто внешнее, случайное сходство между двумя объектами за внутреннее, существенное, и на этом основании сделать вывод о сходстве, которого на самом деле нет. Так, хотя и лошадь, и автомобиль используются как транспортные средства, было бы неверным переносить знания об устройстве машины на анатомию и физиологию лошади. Данная аналогия будет ошибочной.

Тем не менее, метод аналогии занимает намного более значимое место в познании, чем это может показаться на первый взгляд. Ведь аналогия не просто намечает связи между явлениями. Важнейшей особенностью познавательной деятельности человека является то, что наше сознание не способно воспринять абсолютно новое знание, если у него нет точек соприкосновения с уже известным нам знанием. Именно поэтому при объяснении нового материала на занятиях всегда прибегают к примерам, которые и должны провести аналогию между известным и неизвестным знанием.

Моделирование

Метод аналогии тесно связан с методом моделирования.

Метод моделирования предполагает изучение каких-либо объектов посредством их моделей с дальнейшим переносом полученных данных на оригинал.

В основе этого метода лежит существенное сходство объекта-оригинала и его модели. К моделированию следует относиться с той же осторожностью, что и к аналогии, строго указывать пределы и границы допустимых при моделировании упрощений.

Современной науке известно несколько типов моделирования: предметное, мысленное, знаковое и компьютерное.

Предметное моделирование представляет собой использование моделей, воспроизводящих определенные геометрические, физические, динамические или функциональные характеристики прототипа. Так, на моделях исследуются аэродинамические качества самолетов и других машин, ведется разработка различных сооружений (плотин, электростанций и др.).

Мысленное моделирование — это использование различных мысленных представлений в форме воображаемых моделей. Широко известна идеальная планетарная модель атома Э. Резерфорда, напоминавшая Солнечную систему: вокруг положительно заряженно-

30

го ядра (Солнца) вращались отрицательно заряженные электроны (планеты).

Знаковое (символическое) моделирование использует в качестве моделей схемы, чертежи, формулы. В них в условно-знаковой форме отражаются какие-то свойства оригинала. Разновидностью знакового является математическое моделирование, осуществляеемое средствами математики и логики. Язык математики позволяет выразить любые свойства объектов и явлений, описать их функционирование или взаимодействие с другими объектами с помощью системы уравнений. Так создается математическая модель явления. Часто математическое моделирование сочетается с предметным моделированием.

Компьютерное моделирование получило широкое распространение в последнее время. В данном случае компьютер является одновременно и средством, и объектом экспериментального исследования, заменяющим оригинал. Моделью при этом является компьютерная программа (алгоритм).

Анализ

Анализ — метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части и их отдельное изучение.

Эта процедура ставит своей целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи этих частей друг с другом.

Анализ — органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от описания нерасчлененного изучаемого объекта к выявлению его строения, состава, а также свойств и признаков. Для постижения объекта как единого целого недостаточно знать, из чего он состоит. Важно понять, как связаны друг с другом составные части объекта, а это можно сделать, лишь изучив их в единстве. Для этого анализ дополняется синтезом.

Синтез

Синтез — метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета.

31

Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. Важно понять, что синтез вовсе не является простым механическим соединением разъединенных элементов в единую систему. Он показывает место и роль каждого элемента в этой системе, его связь с другими составными частями системы. Таким образом, при синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта.

Синтез — такая же необходимая часть научного познания, как и анализ, и идет вслед за ним. Анализ и синтез — это две стороны единого аналитико-синтетического метода познания, которые не существуют друг без друга.

Классификация

Классификация — метод научного познания, позволяющий объединить в один класс объекты, максимально сходные друг с другом в существенных признаках.

Классификация позволяет свести накопленный многообразный материал к сравнительно небольшому числу классов, типов и форм, выявить исходные единицы анализа, обнаружить устойчивые признаки и отношения. Как правило, классификации выражаются в виде текстов на естественных языках, схем и таблиц.

Разнообразие методов научного познания создает трудности в их использовании и понимании их значимости. Эти проблемы решаются особой областью знания — методологией, т.е. учением о методах. Важнейшая задача методологии — изучение происхождения, сущности, эффективности и других характеристик методов познания.

2.6. Общенаучные подходы

Общая характеристика общенаучных подходов

Мы рассмотрели систему методов научного познания, но она не является статичной и неизменной. Появляются новые методы, а уже известные могут в ходе развития науки переходить из одной категории в другую: частные методы превращаются в особенные, особенные — в общие. Кроме того, в современном научном познании особое значение приобретают общенаучные подходы, которые задают определенную направленность научного исследования, фик-

32

сируют определенный его аспект, но не указывают жестко специфику конкретных исследовательских средств. Общенаучные подходы акцентируют основное направление исследования, «угол зрения» на объект изучения.

Важнейшая черта общенаучных подходов — принципиальная применимость к исследованию любых явлений и любой сферы действительности. Они могут работать во всех без исключения науках. Это обусловлено общенаучным характером категорий, лежащих в основании данных подходов.

Виды общенаучных подходов

К числу общенаучных подходов относятся:

  • структурный подход, ориентирующий на изучение внутреннего строения системы, характера и специфики связей между ее элементами;

  • функциональный подход, изучающий функциональные зависимости элементов данной системы, а также ее входных и выходных параметров;

  • алгоритмический подход, использующийся при описании информационных процессов, функционирования систем управления и в других случаях, когда существует возможность представить изучаемое явление в виде процесса, происходящего по строгим правилам;

  • вероятностный подход, нацеливающий исследователя на выявление статистических закономерностей, ориентирует на изучение процессов как статистических ансамблей;

  • информационный подход связан с выделением и исследованием информационного аспекта различных явлений действительности — объема потока информации, способов ее кодирования и алгоритмов переработки.

Среди общенаучных подходов в современной науке все более важное место занимают системный подход и глобальный эволюционизм.

2.7. Системный подход Сущность системного подхода

Под системным подходом в широком смысле понимают метод исследования окружающего мира, при котором интересующие нас предметы и явления рассматриваются как части или элементы определенного целостного образования.

33

Эти части и элементы, взаимодействуя друг с другом, формируют новые свойства целостного образования (системы), отсутствующие у каждого из них в отдельности. Таким образом, мир с точки зрения системного подхода предстает перед нами как совокупность систем разного уровня, находящихся в отношениях иерархии.

В современной науке в основе представлений о строении материального мира лежит именно системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы.

В современной науке под системой понимают внутреннее (или внешнее) упорядоченное множество взаимосвязанных элементов, проявляющее себя как нечто единое по отношению к другим объектам или внешним условиям.

Понятие «элемент» означает минимальный, далее уже неделимый компонент в рамках системы. Во всех системах связь между ее элементами является более устойчивой, упорядоченной и внутренне необходимой, чем связь каждого из элементов с окружающей средой. Элемент является таковым лишь по отношению к данной системе, при других отношениях он сам может представлять сложную систему. Совокупность связей между элементами образует структуру системы. Существует два типа связей между элементами системы: горизонтальные и вертикальные.

Горизонтальные связи — это связи координации между однопо-рядковыми элементами системы. Они носят коррелирующий характер: ни одна часть системы не может измениться без того, чтобы не изменились другие ее части.

Вертикальные связи — это связи субординации, т.е. соподчинения элементов. Они выражают сложное внутреннее устройство системы, где одни части по своей значимости могут уступать другим подчиняться им.

Степень взаимодействия частей системы друг с другом може быть различной. Кроме того, любой предмет или явление окру жающего мира, с одной стороны, может входить в состав боле крупных и масштабных систем, а с другой стороны — сам являться системой, состоящей из более мелких элементов и составных частей. Поэтому все предметы и явления окружающего нас мира могут изучаться и как элементы систем, и как целостные системы, а системность является неотъемлемым свойством мира, в котором мы живем. В этом заключается сущность системного подхода.

34

Строение системы

Рассматривая строение системы, в ней можно выделить следующие компоненты: подсистемы и части (элементы). Подсистемы являются крупными частями систем, обладающими значительной самостоятельностью. Разница между элементами и подсистемами достаточно условна, если отвлечься от их размера. В качестве примера можно привести человеческий организм, безусловно, являющийся системой. Его подсистемами являются неравная, пищеварительная, дыхательная, кровеносная и другие системы. В свою очередь, они состоят из отдельных органов и тканей, которые являются элементами человеческого организма. Но мы можем рассматривать в качестве самостоятельных систем выделенные нами подсистемы, в таком случае подсистемами будут органы и ткани, а элементами системы — клетки. Таким образом, системы, подсистемы и элементы находятся в отношениях иерархического соподчинения.

Классификация систем

В рамках системного подхода была создана общая теория систем, которая сформулировала принципы, общие для самых различных областей знания. Она начинается с классификации систем и дается по нескольким основаниям.

В зависимости от структуры системы делятся на дискретные, жесткие и централизованные. Дискретные (корпускулярные) системы состоят из подобных друг другу элементов, не связанных между собой непосредственно, а объединенных только общим отношением к окружающей среде, поэтому потеря нескольких элементов не наносит ущерба целостности системы.

Жесткие системы отличаются повышенной организованностью, поэтому удаление даже одного элемента приводит к гибели всей системы.

Централизованные системы имеют одно основное звено, которое, находясь в центре системы, связывает все остальные элементы и управляет ими.

По типу взаимодействия с окружающей средой все системы делятся на открытые и закрытые. Открытыми являются системы реального мира, обязательно обменивающиеся веществом, энергией или информацией с окружающей средой. Закрытые системы не обмениваются ни веществом, ни энергией, ни информацией с окружающей средой. Это понятие является абстракцией высокого уровня и, хотя существует в науке, реально не существует, так как в действительности никакая система не может быть полностью изолирована от воздействия других систем. Поэтому все известные в мире системы являются открытыми.

35

По составу системы можно разделить на материальные и идеальные. К материальным относится большинство органических, неорганических и социальных систем (физические, химические, биологические, геологические, экологические, социальные системы). Также среди материальных систем можно выделить искусственные технические и технологические системы, созданные человеком для удовлетворения своих потребностей.

Идеальные системы представляют собой отражение материальных систем в человеческом и общественном сознании. Примером идеальной системы является наука, которая с помощью законов и теорий описывает реальные материальные системы, существующие в природе.

Свойства системы

Теория систем также изучает свойства систем. Многие высокоорганизованные системы отвечают понятию целесообразности, т.е. ориентированы на достижение какой-либо цели. Эти свойства отсутствуют у отдельных элементов системы и появляются только у системы в целом. Такие свойства называются эмерджентными свойствами системы. Например, вода состоит всего из двух химических элементов — кислорода (О) и водорода (Н), которые по отдельности не обладают свойствами воды. Только при соединении этих элементов в определенную систему (Н20) появляется вода как вещество с присущими ей специфическими свойствами.

У многих высокоорганизованных систем формируется механизм обратной связи — реакция системы на воздействие окружающей среды. Если мы бросим камень, то он пролетит некоторое расстояние и упадет, никак не сопротивляясь этому. В данном случае обратная связь отсутствует. Но если мы попытаемся дернуть кошку за хвост, обратной связью, скорее всего, будут наши исцарапанные руки.

Существует несколько типов обратной связи. Система может своим поведением усиливать внешнее воздействие (если рота солдат будет идти по мосту, шагая «в ногу», мост может рухнуть из-за резонанса), при этом формируется положительная обратная связь. При уменьшении внешнего воздействия создается отрицательная обратная связь. Разновидностью таких связей является гомеостати-ческая обратная связь, сводящая внешнее воздействие к нулю. Примером может служить постоянная температура человеческого тела, остающаяся таковой несмотря на колебания температуры окружающей среды.

Механизм обратной связи делает систему более устойчивой, надежной и эффективной. Также он повышает ее внутреннюю организованность. Именно наличие механизма обратной связи дает

36

возможность говорить, что система имеет какие-то цели, что ее поведение целесообразно.

Практически для любой системы характерна иерархичность строения — последовательное включение системы более низкого уровня в систему более высокого уровня. Это означает, что отношения и связи в системе при определенном ее представлении сами могут рассматриваться как ее элементы, подчиняющиеся соответствующей иерархии. Это позволяет строить различные, не совпадающие между собой последовательности включения систем друг в друга, описывающие исследуемый материальный объект с разных сторон.

В соответствии с системным подходом в природе все взаимосвязано, поэтому можно выделить такие системы, которые включают элементы как живой, так и неживой природы. Естественные науки, начиная изучение материального мира с наиболее простых, непосредственно воспринимаемых человеком материальных объектов, переходят постепенно к изучению сложнейших структур материи, выходящих за пределы человеческого восприятия и несоизмеримых с объектами повседневного окружения. Применяя системный подход, естествознание не просто выделяет типы материальных систем, но и раскрывает их связи и соотношения.

Системный подход как интеграция научного знания

Понятие системы, как и системный подход в целом, было сформировано в XX в. на основе работ А.А. Богданова и Л. фон Берталанфи. Известный русский советский ученый А.А. Богданов стал основоположником тектологии (всеобщей организационной науки). Он утверждал, что любой предмет или явление имеет свою цель и устроен в соответствии с ней. Это дает нам основания считать эти предметы и явления организмами и организациями. В природе существует объективная целесообразность, или организованность, являющаяся результатом естественного отбора. Богданов понимал организованность как свойство целого быть больше суммы своих частей, причем, чем больше эта разница, тем выше степень организации.

Известный австрийский биолог-теоретик Л. фон Берталанфи разработал теорию открытых биологических систем, способных достигать своего конечного состояния, несмотря на некоторые нарушения условий своего существования. Он обратил внимание на существование моделей, принципов и законов, применимых к любым системам, независимо от их содержания. Физические, химические, биологические и социальные системы, по его мнению, должны функционировать по одним и тем же правилам. Он же дал первое определение системы как совокупности элементов, находящихся во взаимодействии.

37

Появление системного подхода говорит о зрелости современной науки. Оно было бы невозможно еще сто лет назад. Этот подход тесно связан с интегративным характером современного естествознания и проявляет себя в междисциплинарных исследованиях, занимающих все более почетное место в современной науке. Конечным пунктом системного исследования является формирование целостной, интегративной модели изучаемого объекта. Для этого отдельные компоненты анализируются не ради их собственного познания, а с целью их последующего сведения в единое целое. Не менее важным является изучение воздействия окружающей среды на целостность системы. При этом сам познавательный процесс также должен быть организован в соответствии с требованием целостности, нацелен на получение интегративного знания. Системный подход отражает единство научного знания, которое выражается в установлении связей и отношений между различными по сложности организации системами, в возможности целостного познания этих систем, во все более глубоком проникновении человека в тайны природы.

2.8. Глобальный эволюционизм

Если в системном подходе воплотилась идея всеобщей связи всех предметов и явлений мира, то в глобальном эволюционизме — идея развития мира.

Глобальный эволюционизм — это убеждение в том, что как Вселенная в целом, так и отдельные ее элементы не могут существовать, не развиваясь. При этом считается, что развитие идет по единому алгоритму — от простого к сложному путем самоорганизации.

Классическая концепция развития

Этот принципиально новый взгляд на мир был сформулирован лишь во второй половине XX в., хотя сама идея развития была присуща научному мировоззрению еще с начала XIX в. Тогда существовала классическая концепция развития, которая признавала, что весь мир находится в постоянном развитии, но живая природа развивается от простого к сложному, а неживая — от современного сложного состояния к самому простому состоянию хаоса. Классическая концепция развития нашла свое обоснование в эволюционной теории Ч. Дарвина, которая описывала эволюцию живой природы, а также в классической термодинамике, из которой вытекали представления об эволюции неживой материи.

38

Классическая термодинамика — это физическая наука, занимающаяся изучением взаимопревращения различных видов энергии. Она основывается на трех основных постулатах, или началах.

Первое начало термодинамики известно как закон сохранения энергии. Это фундаментальный закон, согласно которому важнейшая физическая величина — энергия — сохраняется неизменной в изолированной системе. Когда мы говорим о сохранении энергии, то имеем в виду механическую, тепловую и внутреннюю энергию, т.е. энергию, зависящую лишь от термодинамического состояния системы. Она складывается из движения атомов, энергии химических связей и других видов энергий, связанных с состоянием электронов в атомах и молекулах.

Согласно этому закону, в изолированной системе энергия может только превращаться из одной формы в другую, но ее количество всегда остается постоянным. Если система не изолирована, энергия может изменяться за счет обмена между частями системы или разными системами. Например, ежедневно мы сталкиваемся с тем, что горячий чайник, охлаждаясь, нагревает воздух.

Науке сегодня неизвестна ни одна причина, которая могла бы привести к нарушению данного закона. Иначе можно было бы построить вечный двигатель, создающий энергию из ничего. Поэтому первый закон термодинамики более известен в другой редакции: нельзя построить вечный двигатель первого рода, т.е. такую машину, которая совершала бы работу больше подводимой к ней извне энергии.

Существование вечного двигателя второго рода запрещает второе начало термодинамики: теплота не переходит самопроизвольно от холодного тела к более горячему. Поэтому невозможно построить такую машину, которая работала бы за счет переноса тепла от холодного тела к горячему. Это не запрещено первым началом термодинамики, но практически невозможно.

Второе начало термодинамики указывает на существование двух различных форм энергии — теплоты, связанной с неупорядоченным, хаотическим движением молекул (например, броуновское движение молекул, скорость которого напрямую связана с температурой), и работы, связанной с упорядоченным движением. Работу всегда можно превратить в эквивалентное ей тепло — вспомните, как наши предки получали огонь трением. В то же время тепло в эквивалентную ему работу полностью превратить нельзя, всегда останется некоторое количество теплоты, которое пропадет бесполезно. Другими словами, неупорядоченную форму энергии невозможно полностью перевести в упорядоченную. Мерой неупорядоченности, или мерой хаоса, системы в термодинамике является энтропия. Энтропия не бывает отрицательной, она всегда положи-

39

тельна. Исключением является случай, когда идеальный кристалл находится при температуре абсолютного нуля (но на этот счет существует третье начало термодинамики, говорящее о недостижимости абсолютного нуля, равного —273°С), что невозможно, так как это означало бы прекращение любого движения, в том числе движения атомов и элементарных частиц.

Иногда используется отрицательная величина энтропии — нег-энтропия, которая является мерилом упорядоченности системы. Эта величина может быть только отрицательной. Рост негэнтропии соответствует возрастанию порядка, энтропии — росту хаоса.

Таким образом, в соответствии со вторым началом термодинамики в случае изолированной системы (не обменивающейся веществом, энергией или информацией с окружающей средой) неупорядоченное состояние не может самостоятельно перейти в упорядоченное. Представим себе закрытую систему, в которой вся энергия находится в упорядоченном состоянии (энергия-работа). Если в этой системе начнется процесс преобразования энергии, то мы увидим, что вся энергия-работа постепенно перейдет в энергию-тепло. Полученное тепло может быть использовано для совершения какой-либо полезной работы, но не полностью. Так появится энтропия. При следующем цикле преобразования работа опять полностью перейдет в тепло, но тепло вновь не сможет полностью превратиться в работу, и поэтому энтропия вновь увеличится. Так будет происходить до тех пор, пока вся энергия системы не превратится в тепло и не установится состояние термодинамического равновесия. Таким образом, в изолированной системе энтропия может только возрастать. Поэтому второе начало термодинамики также называют принципом возрастания энтропии. Эта более точная формулировка второго начала термодинамики утверждает, что при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает. Иными словами, любая система стремится к состоянию термодинамического равновесия, которое можно отождествить с хаосом.

Именно из этого принципа вытекали пессимистические представления о развитии Вселенной, характерные для второй половины XIX в. Они воплотились в идею тепловой смерти Вселенной, сформулированную В. Томсоном в 1851 г. Упорядоченными источниками энергии во Вселенной являются звезды, возраст которых хотя и велик, но не бесконечен. До открытия второго начала термодинамики считалось, что на смену погасшим звездам загораются новые, и процесс этот будет идти бесконечно. Но признание того факта, что все виды энергии деградируют, со временем превращаясь в тепло, требовало признать, что новых звезд должно загораться меньше, чем погасло старых. Поэтому со временем должны закон-

40

чить свое существование все звезды, отдав свою энергию в окружающее пространство, и вся Вселенная придет в состояние хаоса — термодинамического равновесия с температурой лишь на несколько градусов выше абсолютного нуля. В этом пространстве будут разбросаны безжизненные, остывшие шары планет и звезд. Не будет источников энергии — не будет жизни.

Хотя эту концепцию пытались опровергнуть крупнейшие философы и ученые того времени, в рамках существовавших тогда гносеологических предпосылок это было невозможно. Лишь в XX в., признав Вселенную открытой системой, удалось отказаться от идеи тепловой смерти.

Становление современной концепции развития. Идея самоорганизации материи

Первая крупная брешь в классической концепции развития была пробита в 1920-е гг. в результате создания новой модели расширяющейся Вселенной, которая сменила старую стационарную модель. Согласно новым представлениям, наша Вселенная возникла 15—20 млрд. лет назад в результате Большого взрыва и лишь постепенно пришла к современному состоянию, которое также не является стабильным. При этом эволюция шла от простейшего хаотического к современному упорядоченному состоянию.

Затем новые эволюционные идеи проникли и утвердились в химии, геологии, экологии и других науках. Но до середины XX в. по-прежнему считалось, что для неживой материи основной тенденцией является стремление к разрушению и лишь жизнь, представляющая стремление к упорядоченности и организованности, противостоит этой основной тенденции. Данное противоречие впервые было четко зафиксировано в книге известного физика-теоретика Э. Шредингера «Что такое жизнь?». Так был дан толчок исследованиям, позволившим по-новому посмотреть на процессы в неживой природе.

Также к середине XX в. была сформулирована общая теория систем и основы кибернетики. В них было установлено, что все системы, известные нам, являются открытыми, т.е. постоянно обмениваются веществом, энергией и информацией с окружающей средой. Поэтому решить проблему развития в физике и, самое главное, найти подходы к решению вопроса о тепловой смерти Вселенной удалось только тогда, когда физика обратилась к понятию открытой системы. Тогда же было установлено, что при определенных условиях в открытых системах могут возникать процессы самоорганизации.

41

Самоорганизация — это скачкообразный природный процесс, переводящий открытую неравновесную систему, достигшую в своем развитии критического состояния, в новое устойчивое состояние с более высоким уровнем упорядоченности по сравнению с исходным.

Критическое состояние — это состояние крайней неустойчивости, достигаемое открытой неравновесной системой в ходе предшествующего периода плавного, эволюционного развития. Ключ к пониманию процессов самоорганизации находится в исследовании взаимодействия открытых систем с окружающей средой.

Примеров процессов самоорганизации можно привести достаточно много. Все слышали о лазерах. Эти приборы создают высокоорганизованное оптическое излучение. Лазер отличается от традиционных источников света — ламп накаливания и газоразрядных ламп, которые действуют за счет процессов, подчиняющихся статистическим законам. В них в нагретой до высокой температуры среде возбужденные атомы и ионы излучают кванты света с различными длинами волн во всех направлениях, причем только малую часть из них мы воспринимаем как видимый свет. А в лазере, в активной среде резонатора, под воздействием внешнего светового поля (при «накачке») благодаря поступлению энергии извне частицы начинают колебаться в одной фазе. В результате возникает когерентное, или согласованное, взаимодействие, формирующее узконаправленный луч почти монохроматических квантов света.

Классическим также считается пример превращения ламинарного течения жидкости в турбулентное. Каждый из нас не раз наблюдал это явление, когда смотрел, как стекает вода из ванной. Пока воды в ванной мало, она стекает ламинарно (жидкость движется слоями по направлению течения). Но если воды много, давление на нижний слой заставляет воду стекать быстро. Это приводит к формированию вихреобразной вращающейся воронки, т.е. к появлению турбулентности.

Еще один опыт впервые был проведен еще в 1900 г. физиком X. Бенаром. Он наливал ртуть в плоский сосуд, подогреваемый снизу. Когда разность температур верхнего и нижнего слоев ртути достигала некоторого критического значения, верхний слой образовывал множество шестигранных призм, похожих на пчелиные соты. Они получили название ячеек Бенара и служат классическим примером спонтанного образования структур, причем оно происходит за счет внутренней перестройки связей между элементами системы.

В химии примером самоорганизации могут служить так называемые «химические часы» (реакция Белоусова—Жаботинского). Она была открыта в 1951 г. химиком Б.П. Белоусовым, который установил, что если в пробирку слить раствор некоторых кислот,

42

сульфат церия и бромид калия, то за ходом идущей окислительно-восстановительной реакции можно следить по изменению цвета промежуточных продуктов. На протяжении получаса цвет строго периодично менялся с красного на синий, и наоборот. В 1960-е гг. молодой биофизик А.М. Жаботинский раскрыл механизм этой реакции, которая получила свое название по именам двух ученых: того, кто ее открыл, и того, кто ее объяснил.

У всех приведенных примеров есть общий алгоритм: огромное множество элементов, составляющих эти системы, вдруг, как по команде, начинают вести себя скоординированно, согласованно, хотя до этого пребывали в состоянии хаоса. Более того, эта возникшая упорядоченность не распадается, а продолжает устойчиво существовать.

Хотя процессы самоорганизации были известны ученым достаточно давно, общие теории самоорганизации появились лишь в 1970-е гг. К их созданию ученые шли разными путями: Г. Хакен, создатель синергетики, — из квантовой электроники и радиофизики; И. Пригожин, основатель неравновесной термодинамики, — из анализа специфических химических реакций. Были ученые, изучавшие эти процессы в биологии, — М. Эйген, в метеорологии — Е. Лоренц, а также автор теории катастроф Р. Том. Постепенно ученые начали выходить за рамки своих узких дисциплин, стали замечать аналогию между математическими моделями и концептуальными системами, описывающими такие разные на первый взгляд процессы.

Так стало формироваться убеждение, что во всех этих явлениях есть единая основа, позволяющая создать общую теорию самоорганизации материи. Сегодня общая теория самоорганизации развивается в основном в рамках двух наук. — синергетики и неравновесной термодинамики, во многом дополняющих друг друга.

Основы синергетики и неравновесной термодинамики

Синергетика (кооперативность, сотрудничество, взаимодействие различных элементов системы) — по определению ее создателя Г. Хакена, занимается изучением систем, состоящих из многих подсистем самой различной природы, таких, как атомы, молекулы, клетки, механические элементы, органы, животные и даже люди. Это наука о самоорганизации простых систем, о превращении хаоса в порядок.

Основная идея синергетики — идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка

43

и хаоса в результате процесса самоорганизации. Это происходит при возникновении положительной обратной связи между системой и окружающей средой. Иными словами, под воздействием внешней среды внутри системы возникают полезные изменения, которые постепенно накапливаются, а затем кардинально меняют эту систему, превращая ее в другую, более сложную и высокоорганизованную.

Воздействию окружающей среды могут подвергаться сразу несколько однотипных систем, но в силу различных флуктуаций (отклонений) они могут формировать разные обратные связи, порождать разные ответные реакции, далеко не все из которых могут привести к самоорганизации системы. Можно сказать, что между системами идет своеобразная конкуренция, отбор того типа поведения, такой обратной связи, которая позволяет выжить в условиях конкуренции. Как замечает сам Хакен, это приводит нас в определенном смысле к своего рода обобщенному дарвинизму, действие которого распространяется не только на органический мир, но и на неживую природу, а также на социальные системы.

Синергетика претендует на открытие универсального механизма самоорганизации. Однако объектом синергетики независимо от его природы могут быть только те системы, которые удовлетворяют определенным требованиям. Такими требованиями, в частности, являются открытость, существенная неравновесность и выход из критического состояния скачком, в процессе фазового перехода.

Открытость — важнейшее свойство самоорганизующихся систем, которые постоянно обмениваются веществом, энергией и информацией с окружающей средой. Именно открытость является причиной неравновесности систем. Если закрытые системы, для которых и были сформулированы начала классической термодинамики, неизбежно стремятся к однородному равновесному состоянию — состоянию термодинамического равновесия, то открытые системы меняются, причем необратимо, в них важным оказывается фактор времени.

При определенных условиях и значениях параметров, характеризующих систему и изменяющихся под воздействием изменений окружающей среды, система переходит в состояние существенной неравновесности — критическое состояние, сопровождаемое потерей устойчивости. Ведь любая система остается сама собой только в определенных рамках. Так, вода остается водой только при температуре от 0 до 100°С при нормальном атмосферном давлении, за границами этих условий она превращается в лед или пар. Естественно, что существование социальной или биологической системы будет зависеть от иных условий, чем функционирование физических или химических систем. Но такие важнейшие показатели, от которых зависит само существование систем, есть всегда. Они называются управляющими параметрами системы.

44

Из критического состояния существенной неравновесности системы всегда выходят скачком. Скачок — это крайне нелинейный процесс, при котором даже малые изменения управляющих параметров системы вызывают ее переход в новое качество. Например, при снижении температуры воды до определенного значения она скачкообразно превращается в лед. Около критической точки перехода достаточно изменить температуру воды (управляющий параметр) на доли градуса, чтобы вызвать ее практически мгновенное превращение в твердое тело.

Итак, самоорганизующиеся системы обретают присущие им структуры или функции без какого бы то ни было вмешательства извне. Обычно они состоят из большого числа подсистем. При изменении управляющих параметров в системе образуются качественно новые структуры. При этом системы переходят из однородного, недифференцированного состояния покоя в неоднородное, но хорошо упорядоченное состояние или в одно из нескольких возможных состояний.

Важно, что этими системами можно управлять, изменяя действующие на них внешние факторы. Поток энергии, вещества или информации уводит физическую, химическую, биологическую или социальную систему далеко от состояния термодинамического равновесия. Изменяя температуру, уровень радиации, давление и т.д., мы можем управлять системами извне.

Самоорганизующиеся системы способны сохранять внутреннюю устойчивость при воздействии внешней среды, они находят способы самосохранения, чтобы не разрушаться и даже улучшать свою структуру.

Несколько иной аспект имеет неравновесная термодинамика И. Пригожина. В созданной им науке он поставил задачу доказать, что неравновесие может быть причиной порядка. Новая термодинамика стала способна отражать скачкообразные процессы.

Чтобы система могла не только поддерживать, но и создавать упорядоченность из хаоса, она непременно должна быть открытой и иметь приток вещества, энергии и информации извне. Именно такие системы названы Пригожиным диссипативными.

Диссипативность — это особое динамическое состояние, когда из-за процессов, протекающих с элементами неравновесной системы, на уровне всей системы проявляются качественно новые свойства и процессы.

Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые структуры, происходить переход к порядку из хаоса.

45

В ходе своего развития диссипативные системы проходят два этапа:

  1. период плавного эволюционного развития с хорошо предсказуемыми линейными изменениями, подводящими в итоге систему к некоторому неустойчивому критическому состоянию;

  2. скачок, одномоментно переводящий систему в новое устойчивое состояние с более высокой степенью сложности и упорядоченности.

Особое внимание неравновесная термодинамика уделяет фазе скачка, являющейся разрешением возникшей кризисной ситуации и характеризующейся критическими значениями управляющих параметров системы. Пригожин трактует такой переход как приспособление диссипативной системы к изменившимся внешним условиям, чем обеспечивается ее выживание. Это и есть акт самоорганизации.

Очень важно отметить, что переход диссипативной системы из критического состояния в новое устойчивое состояние неоднозначен. Сложные неравновесные системы имеют возможность перейти из неустойчивого положения в одно из нескольких возможных устойчивых состояний. В какое именно из них совершится переход — дело случая. Это связано с тем, что в системе, пребывающей в критическом состоянии, развиваются сильные флуктуации. Под действием одной из них и происходит скачок в конкретное устойчивое состояние. Поскольку флуктуации случайны, то и «выбор» конечного состояния оказывается случайным. Но после совершения перехода назад возврата нет. Скачок носит одноразовый и необратимый характер.

Критическое значение параметров системы, при которых возможен неоднозначный переход в новое состояние, называют точкой бифуркации.

Обнаружение феномена бифуркации, как считает Пригожин, ввело в физику элемент исторического подхода, смогло доказать необратимость времени. При протекании самоорганизации в явном виде обнаруживается «стрела времени» — однонаправленность времени от прошлого к будущему. Классическая термодинамика доказывала необратимость времени, используя второе начало термодинамики. Необратимый процесс возрастания энтропии всегда идет от прошлого к будущему. Тем не менее, в классической механике возможность обращения времени была не исключена. Так, поменяв в уравнениях «плюс» на «минус» перед временем и скоростью, можно получить описание движения данного тела по пройденному пути в обратном направлении. Конечно, весь наш опыт убеждал в невозможности повернуть время вспять, однако теоретически такая возможность оставалась.

46

Неравновесная термодинамика Пригожина использует для доказательства существования «стрелы времени» скачок — процесс скачка невозможно повернуть назад. После перехода через точку бифуркации система качественно преобразуется. Таким образом, законы неравновесной термодинамики с неизбежностью говорят о необратимости времени. Ведь скачок в точке бифуркации всегда случаен, определяется уникальным сочетанием множества факторов, воссоздать которые вновь (если бы мы захотели повернуть процесс вспять) практически невозможно.

Феномен бифуркации также заставляет по-новому взглянуть на соотношение случайного и закономерного в развитии систем и в природе в целом. Если в фазе эволюции ход процессов закономерен и жестко детерминирован, то скачок всегда происходит случайным образом, и поэтому именно случайность определяет последующий закономерный эволюционный этап вплоть до следующего скачка в новой критической точке.

В том, что точки бифуркации — это не абстракция, имеет возможность убедиться каждый человек. Ведь человек и его жизнь тоже являются сложной открытой неравновесной системой. У каждого из нас периодически возникают ситуации, когда мы стоим перед выбором своего дальнейшего жизненного пути. И очень часто наш выбор определяется случайным стечением обстоятельств. Например, человек собирался уехать учиться в другой город, но заболел и остался дома, поэтому пошел учиться совсем в другое место. Этот случайный выбор определил его последующий жизненный путь — выбор работы, знакомство с друзьями, будущим спутником жизни и т.д.

Системный подход и глобальный эволюционизм являются важнейшими составными частями современной научной картины мира. Она выглядит следующим образом. Мир, в котором мы живем, состоит из разномасштабных открытых систем, развитие которых протекает по единому алгоритму. В основе этого алгоритма заложена присущая материи способность к самоорганизации, проявляющаяся в критических точках системы. Самая крупная из известных человеку систем — это развивающаяся Вселенная. Вся ее история — от Большого взрыва до возникновения человека — предстает как единый процесс материальной эволюции, самоорганизации, саморазвития материи. При этом весь мир представляет собой единое целое, иерархически организованную систему. Это и есть идея глобального эволюционизма.

Литература для самостоятельного изучения

  1. Арнольд А.И. Теория катастроф. М., 1990.

  2. Богданов А.А. Тектология. Всеобщая организационная наука. В 2 кн. М., 1989.

47

  1. Бродянский В.М. Вечный двигатель — прежде и теперь. М., 1989.

  2. Данилова В.С., Кожевников Н.Н. Основные концепции современного естествознания. М., 2001.

  3. Климентович Н.Ю. Без формул о синергетике. Минск, 1986.

  4. Кочергин А.Н. Методы и формы научного познания. М., 1990.

  5. Петров ЮА., Никифоров АЛ. Логика и методология научного познания. М., 1982.

  6. Петров Ю.А. Теория познания. М., 1988.

  7. Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986.

  1. Ровинский Р.Е. Развивающаяся Вселенная. М., 1996.

  2. Самоорганизация в природе и обществе. СПб., 1994.

  3. Хакен Г. Синергетика. М., 1985.

  4. Штофф ВА Введение в методологию научного познания. Л., 1972.

  5. Эткинс П. Порядок и беспорядок в природе. М., 1987.

.

Обратно в раздел Наука