Экзаменационные билеты по геометрии 9 класс.

- 63 Кб, doc/zip; 16стр.

ПРИМЕРНЫЕ ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ

ДЛЯ ПРОВЕДЕНИЯ УСТНОЙ ИТОГОВОЙ АТТЕСТАЦИИ

ВЫПУСКНИКОВ IX КЛАССОВ ОБЩЕОБРАЗОВАТЕЛЬНЫХ

УЧРЕЖДЕНИЙ В 2005/06 УЧЕБНОМ ГОДУ

Объяснительная записка

Согласно Закону Российской Федерации «Об образовании» государственная (итоговая) аттестация учащихся по завершении основного общего образования является обязательной. Государственная (итоговая) аттестация выпускников IX классов общеобразовательных учреждений проводится в форме устных и письменных экзаменов.

Форма проведения экзаменов по выбору может быть различной: по билетам, собеседование, защита реферата, комплексный анализ текста (по русскому языку). В первом случае выпускник отвечает на вопросы, сформулированные в билетах, выполняет предложенные практические задания (решение задачи, разбор предложения, лабораторная работа, демонстрация опытов).

Выпускник, избравший собеседование как одну из форм устного экзамена, по предложению аттестационной комиссии дает без подготовки развернутый ответ по одной из ключевых тем курса или отвечает на вопросы обобщающего характера по темам, изученным в соответствии с учебной программой. Собеседование целесообразно проводить с выпускниками, имеющими отличные знания по предмету, проявившими интерес к научным исследованиям в избранной области знаний и обладающими аналитическими способностями.

Защита реферата предполагает предварительный выбор выпускником интересующей его темы работы с учетом рекомендаций учителя-предметника, последующее глубокое изучение избранной для реферата проблемы, изложение выводов по теме реферата. Не позднее чем за неделю до экзамена реферат представляется выпускником на рецензию учителю-предметнику. Аттестационная комиссия на экзамене знакомится с рецензией на представленную работу и выставляет оценку выпускнику после защиты реферата.

Выпускник, избравший комплексный анализ текста как одну из форм устного экзамена по русскому языку, характеризует тип, стиль подобранного учителем текста, определяет его тему, главную мысль, комментирует имеющиеся в нем орфограммы и пунктограммы.

Учащийся для экзамена по выбору может избрать любой предмет, изучавшийся в IX классе. На экзаменах по выбору по всем учебным предметам проверяется соответствие знаний выпускников требованиям государственных образовательных программ, глубина и прочность полученных знаний, практическое их применение.

В предложенный материал по всем учебным предметам можно внести изменения, дополнить его, исходя из местных условий, другими вопросами и заданиями, а также разработать свои с последующим обсуждением и утверждением на методическом совете. При корректировке примерных билетов по истории России и обществознанию желательно внести вопросы, связанные с российской государственной символикой (герб, флаг, гимн).

«Вестник образования» № 4; февраль 2006.

ГЕОМЕТРИЯ

По геометрии предлагается два блока экзаменационных билетов – для общеобразовательных школ и школ (классов) с углубленным изучением предмета.

Общеобразовательная школа

В каждом билете три вопроса. В первом вопросе предлагается сформулировать и доказать теорему.

Во втором вопросе дается одно из трех следующих заданий: а) дать определение понятия, указать его основные свойства или привести примеры; б) записать формулу и дать ее вывод; в) привести описание основных этапов построения геометрической фигуры.

Третий вопрос – практический, он содержит задачу.

Билет № 1

1. Первый признак равенства треугольников.

2. Параллелограмм. Определение, свойства.

3. Задача по теме «Координаты и векторы».

Билет № 2

1. Второй признак равенства треугольников.

2. Прямоугольник. Определение, свойства.

3. Задача по теме «Площади плоских фигур».

Билет № 3

1. Третий признак равенства треугольников.

2. Ромб. Определение, свойства.

3. Задача по теме «Геометрические преобразования».

Билет № 4

1. Признаки параллельности двух прямых.

2. Окружность. Определение, взаимное расположение прямой и окружности.

3. Задача по теме «Четырехугольники».

Билет № 5

1. Теорема о сумме внутренних углов треугольника.

2. Касательная к окружности. Определение, свойство.

3. Задача по теме «Площади плоских фигур».

Билет № 6

1. Теорема о сумме углов выпуклого n-угольника.

2. Формула длины окружности. Запись, вывод.

3. Задача по теме «Треугольники».

Билет № 7

1. Теорема о соотношениях между сторонами и углами треугольника.

2. Формула для радиуса окружности, описанной около правильного n-угольника. Запись, вывод.

3. Задача по теме «Четырехугольники».

Билет № 8

1. Теорема о соотношении между сторонами треугольника (неравенство треугольника).

2. Формула для радиуса окружности, вписанной в правильный n-угольник. Запись, вывод.

3. Задача по теме «Площади плоских фигур».

Билет № 9

1. Теорема о средней линии треугольника.

2. Формула площади круга. Запись, вывод.

3. Задача по теме «Геометрические преобразования».

Билет № 10

1. Теорема о средней линии трапеции.

2. Формулы площади треугольника. Запись, вывод одной из них.

3. Задача по теме «Окружность и круг».

Билет № 11

1. Теорема об окружности, описанной около треугольника.

2. Тригонометрические тождества. Примеры, доказательства.

3. Задача по теме «Параллельность и перпендикулярность».

Билет № 12

1. Теорема об окружности, вписанной в треугольник.

2. Формула площади трапеции. Запись, вывод.

3. Задача по теме «Геометрические преобразования».

Билет № 13

1. Теорема об угле, вписанном в окружность.

2. Формула площади параллелограмма. Запись, вывод.

3. Задача по теме «Треугольники».

Билет № 14

1. Признаки параллелограмма.

2. Параллельный перенос. Определение, примеры.

3. Задача по теме «Окружность и круг».

Билет № 15

1. Теорема Фалеса.

2. Осевая симметрия. Определение, примеры.

3. Задача по теме «Вписанные и описанные многоугольники».

Билет № 16

1. Теорема Пифагора.

2. Центральная симметрия. Определение, примеры.

3. Задача по теме «Вписанные и описанные многоугольники».

Билет № 17

1. Теорема синусов.

2. Серединный перпендикуляр. Определение, свойство.

3. Задача по теме «Окружность и круг».

Билет № 18

1. Теорема косинусов.

2. Биссектриса угла. Определение, свойство.

3. Задача по теме «Координаты и векторы».

Билет № 19

1. Первый признак подобия треугольников.

2. Построение середины данного отрезка.

3. Задача по теме «Параллельность и перпендикулярность».

Билет № 20

1. Второй признак подобия треугольников.

2. Построение биссектрисы данного угла.

3. Задача по теме «Вписанные и описанные многоугольники».

Билет № 21

1. Третий признак подобия треугольников.

2. Построение угла, равного данному.

3. Задача по теме «Координаты и векторы».

Билет № 22

1. Вывод уравнения прямой.

2. Перпендикулярные прямые. Определение, построение прямой, перпендикулярной данной.

3. Задача по теме «Четырехугольники».

Билет № 23

1. Вывод уравнения окружности.

2. Равнобедренный треугольник. Определение, свойства.

3. Задача по теме «Параллельность и перпендикулярность».

Билет № 24

1. Скалярное произведение двух векторов. Определение, свойства.

2. Вертикальные углы. Определение, свойство.

3. Задача по теме «Треугольники».

Задачи к билетам

Тема «Треугольники»

1. Прямая, перпендикулярная биссектрисе угла А, пересекает его стороны в точках В и С. Докажите, что треугольник AВС является равнобедренным.

2. В прямоугольных треугольниках АВС и А1В1С1 из вершин прямых углов С и С1 проведены высоты СН и С1Н1; СН = С1Н1, АН = А1Н1. Докажите, что треугольники АВС и А1В1С1 равны.

3. В равностороннем треугольнике АВС на стороне АВ отложен отрезок АА1 = 1/3АВ, на ВС – отрезок ВВ1 = 1/3BC и на СА – отрезок СС1 = 1/3СА. Докажите, что треугольник А1В1С1 равносторонний.

4. В треугольнике АВС углы А и С равны. На стороне АС взяты точки D и Е такие, что АD = СЕ. Докажите, что треугольник DВЕ равнобедренный.

5. Определите вид треугольника, вершинами которого являются середины сторон равнобедренного треугольника.

6. В равнобедренном треугольнике АВС из концов основания АС проведены высоты, которые пересекаются в точке Н. Докажите, что ВН АС.

7. В прямоугольном треугольнике АВС угол В равен 30°. Вершина прямого угла С соединена отрезком с точкой М, принадлежащей гипотенузе. Угол АМС равен 60°. Докажите, что СМ является медианой треугольника.

8. В треугольнике АВС биссектрисы углов А и В пересекаются под углом 128°. Найдите угол С.

9. Постройте треугольник по стороне, опущенной на нее высоте и прилежащему к ней углу.

10. Постройте треугольник по двум сторонам и медиане, проведенной к третьей стороне.

11. Постройте треугольник по стороне, высоте и медиане, проведенным из прилежащей к ней вершины треугольника.

12. Постройте треугольник по стороне, опущенной на нее высоте и проведенной к ней медиане.

13. Постройте прямоугольный треугольник по катету и сумме гипотенузы и другого катета.

14. Гипотенуза равнобедренного прямоугольного треугольника равна 12 см. Найдите расстояние от нее до точки пересечения медиан треугольника.

15. В равнобедренный прямоугольный треугольник вписан квадрат таким образом, что одна из его сторон лежит на гипотенузе. Найдите периметр квадрата, если гипотенуза равна 8 см.

16. Перпендикуляр, опущенный из середины одного катета на гипотенузу, равен 6 см, а середина гипотенузы отстоит от этого же катета на 7,5 см. Найдите стороны данного треугольника.

17. Из середины М гипотенузы прямоугольного треугольника АВС проведен к ней перпендикуляр, который пересекает один из катетов данного треугольника в точке D, а продолжение другого – в точке Е, МD = а, МЕ = b. Найдите стороны данного треугольника.

18. В треугольнике даны сторона а и прилежащие к ней углы β и γ. Найдите остальные элементы треугольника.

19. В треугольнике даны две стороны а и b. Найдите третью сторону треугольника, если медианы, проведенные к известным сторонам, пересекаются под прямым углом.

20. В треугольнике АВС известны все стороны: АВ = 13 см, ВС = 14 см, АС = 15 см. К стороне АВ через вершину В проведен перпендикуляр, который пересекает продолжение биссектрисы СL в точке Е. Найдите BE.

Тема «Параллельность и перпендикулярность»

21. Найдите углы четырехугольника АВСD, если АВ ||СD, угол АВС = 138°, угол СDА = 52°.

22. Докажите, что биссектрисы двух: а) соответственных или накрест лежащих углов, образованных при пересечении двух параллельных прямых третьей, параллельны; б) внешних или внутренних односторонних углов, образованных при пересечении двух параллельных прямых третьей, перпендикулярны.

23. В треугольнике АВС угол А = 42°, угол В = 48°. Треугольник пересечен прямой, параллельной стороне АС. Определите углы образовавшегося треугольника.

24. Отрезки АС и ВD в точке пересечения делятся пополам. Соедините последовательно точки А, В, С, D и докажите, что параллельны и равны отрезки: а) АВ и СD; б) ВС и АD.

25. Из точки С, взятой внутри угла АОВ, равного 53°, проведены прямые, параллельные сторонам данного угла. Найдите наибольший угол при точке С.

26. Прямая, пересекающая две параллельные прямые, образует с одной из них угол в 150°. Найдите отрезок секущей, заключенный между этими прямыми, если расстояние между двумя параллельными прямыми равно 27 см.

27. Докажите, что середина отрезка прямой, заключенного между двумя параллельными прямыми, является серединой отрезков прямых, проходящих через эту точку и заключенных между теми же параллельными прямыми.

28. В треугольнике АВС проведена биссектриса угла В, пересекающая сторону АС в точке D. Через точку D проведена прямая, параллельная стороне ВС и пересекающая сторону АВ в точке Е. Докажите, что DЕ = ВЕ.

29. В окружности проведены хорды АВ || СD и АЕ || FD. Докажите, что хорды FВ и СЕ параллельны.

30. В треугольнике АВС на стороне ВС взята точка D таким образом, что угол DАС = углу АВС. Докажите, что угол АDС = углу ВАС.

31. Угол АВС равен 45°. На его стороне ВС взята произвольная точка D и проведен отрезок DЕ так, что DЕ ВА (Е принадлежит АВ). Аналогично проведены отрезки ЕF и FG , ЕF ВС и FG ВА (F, G принадлежат СВ и АВ соответственно); DЕ = 10 см. Найдите отрезок FG.

32. В треугольнике биссектрисы двух углов пересеклись под углом 140°. Определите вид данного треугольника.

33. В прямоугольном треугольнике АВС (угол С – прямой) АD и ВЕ – продолжения гипотенузы. Биссектрисы углов САD и СВЕ продолжены до пересечения в точке М. Найдите угол АМВ.

34. Два угла с соответственно перпендикулярными сторонами относятся как 17:19. Найдите эти углы.

35. Стороны тупого и острого углов перпендикулярны. Найдите эти углы, если их разность равна 32°20'.

36. На отрезке АВ взята произвольная точка С. Через точки А и В проведены по одну сторону от данного отрезка параллельные лучи. На них соответственно взяты точки D и Е таким образом, что АD = АС и ВЕ = ВС. Найдите угол DСЕ.

37. В треугольнике АВС биссектрисы внутренних углов В и С пересекаются в точке О. Через эту точку проведена прямая ОD параллельно АС до пересечения с ВС в точке D и прямая ОЕ параллельно АВ до пересечения с ВС в точке Е. Докажите, что периметр треугольника ОЕD равен длине стороны ВС.

38. На прямой a взята точка А. Через нее проведена прямая АВ; АС и АD – биссектрисы соответственно углов ВАМ и ВАN. На АС и АD взяты соответственно точки К и L. Докажите, что если КL || MN, то АВ делит отрезок КL пополам.

39. MN и РQ – параллельные прямые. Из точки А, принадлежащей прямой MN, проведены к прямой РQ наклонная АВ и перпендикуляр АС (точки В и С принадлежат прямой РQ). Точка D принадлежит прямой MN, и прямая ВD пересекает АС в точке Е. Докажите, что если ЕD = 2АВ, то угол DВС = 1/3 угла АВС.

40. Из точки, принадлежащей одной из сторон острого угла, проведен к ней перпендикуляр. Докажите, что он пересекает другую сторону данного угла.

Тема «Четырехугольники»

41. Найдите углы параллелограмма, если его неравные углы относятся как 5:7.

42. Одна сторона параллелограмма равна 3,6 см и составляет 0,3 его периметра. Найдите остальные стороны параллелограмма.

43. Постройте параллелограмм по двум диагоналям и углу между ними.

44. Одна сторона параллелограмма равна 5,4 см и составляет 40% его периметра. Найдите остальные стороны параллелограмма.

45. В параллелограмме АВСD биссектриса угла А пересекает продолжение ВС в точке Е. Найдите периметр параллелограмма, если ВЕ = 16 см, СЕ = 5 см.

46. Докажите, что сумма расстояний от любой внутренней точки параллелограмма до всех его сторон есть величина постоянная. Чему равна эта сумма?

47. Высоты, проведенные из вершины ромба, образуют угол 30°. Найдите: а) углы ромба; б) углы, которые образуют диагонали с его сторонами.

48. В равнобедренный прямоугольный треугольник, катет которого равен 4,3 см, вписан квадрат таким образом, что у них один угол общий. Найдите периметр квадрата.

49. В равнобедренный прямоугольный треугольник вписан квадрат таким образом, что одна его сторона лежит на гипотенузе, которая равна 12 см. Найдите периметр квадрата.

50. В ромбе высота, проведенная из вершины тупого угла, делит его сторону пополам. Найдите: а) углы ромба; б) его периметр, если меньшая диагональ равна 3,5 см.

51. В квадрате АВСD точки Е и F – середины соответственно сторон ВС и СD. Точки А и Е, В и F соединены отрезками. Докажите, что АЕ ВF.

52. В параллелограмме АВСD точки Е, F – середины соответственно сторон ВС и АD. Определите вид четырехугольника ВЕDF.

53. Докажите, что если каждая диагональ четырехугольника делит его периметр пополам, то он является параллелограммом.

54. Через середину гипотенузы прямоугольного треугольника проведены прямые, параллельные катетам. Определите вид получившегося четырехугольника и найдите его диагонали, если гипотенуза равна 9 см.

55. В треугольнике АВС угол С = 90°. Через основание биссектрисы угола С проведены прямые, параллельные катетам. Определите вид получившегося четырехугольника.

56. Восстановите ромб по концам одной его диагонали и середине одной из его сторон.

57. Постройте трапецию АВСD по разности оснований АD и ВС, боковым сторонам АВ и СD и диагонали АС.

58. Докажите, что в любой трапеции середины непараллельных сторон и диагоналей принадлежат одной прямой.

59. Докажите, что в равнобедренной трапеции прямые, соединяющие середины противолежащих сторон, перпендикулярны.

60. Сумма углов при нижнем основании трапеции равна 90°. Докажите, что отрезок, соединяющий середины оснований трапеции, равен их полу-разности.

Тема «Окружность и круг»

61. Из точки, принадлежащей окружности, проведены две равные хорды. Докажите, что диаметр, проходящий через эту точку, делит угол между хордами пополам.

62. В окружности проведены три равные хорды, одна из которых удалена от центра на 3 см. На каком расстоянии находятся от центра две другие хорды?

63. Хорда окружности пересекает ее диаметр под углом 30° и делится им на части, равные 12 см и 6 см. Найдите расстояние от середины хорды до диаметра.

64. Как расположены относительно друг друга две окружности (О1; R1) и (О2; R2), если О1О2 = 2 см, R1 = 4 см и R2 = 6 см?

65. Две окружности (С; а) и (D; b) касаются внешним образом. Известно, что СD = 16 см и а = 4 см. Найдите b.

66. Найдите диаметры двух концентрических окружностей, если ширина соответствующего кольца равна 12 см, а радиусы окружностей относятся как 5:2.

67. Найдите условие, при котором окружность (А; а) целиком лежит в круге (В; b).

68. Докажите равенство отрезков касательных, проведенных из одной точки вне окружности к этой окружности.

69. Прямая пересекает окружность в точках А и В, С – произвольная точка отрезка АВ. Докажите, что расстояние от этой точки до центра окружности меньше радиуса данной окружности.

70. Докажите, что если прямая пересекает две концентрические окружности, то отрезки секущей, лежащие между этими окружностями, равны между собой.

71. Окружность разделена тремя точками на части, которые относятся между собой как 2:3:5. Через точки деления проведены хорды. Определите вид получившегося треугольника.

72. Даны два непересекающихся круга радиуса R. Расстояние между их центрами равно d. Найдите сторону и площадь ромба, образованного касательными, проведенными из центра каждого круга к другому кругу.

73. Через общую точку двух внешне касающихся окружностей проведена секущая. Докажите, что радиусы, проведенные в крайние точки пересечения секущей с окружностями, параллельны.

74. Две окружности внешне касаются в точке А. В и С – точки касания их внешней касательной, отрезок ВС равен a. Найдите радиус окружности, проходящей через точки А, В и С.

75. Окружности, радиусы которых равны 1 см и 3 см, внешне касаются. Найдите угол между их внешними касательными.

76. А, В, С – последовательные точки прямой. На отрезках АВ и АС как на диаметрах построены окружности. К отрезку АС в точке В проведен перпендикулярный луч, пересекающий большую окружность в точке D. Из точки С проведена касательная СК к меньшей окружности. Докажите, что СD = СК.

77. В круге с центром в точке О проведен диаметр АВ. Через точки А и В проведены касательные. Третья касательная, проведенная через точку М окружности, пересекает первые две касательные в точках С и D. Докажите, что треугольник СОD прямоугольный.

78. Через внешнюю точку к окружности проведены секущая, проходящая через центр окружности, и касательная, отрезок которой до точки касания равен половине секущей. Докажите, что отрезок касательной относится к радиусу окружности как 4:3.

79. Две окружности с радиусами 10 см и 17 см пересекаются. Их общая хорда равна 16 см. Найдите длину их общей касательной.

80. Две окружности, радиусы которых равны 2 см и 3 см, внутренне касаются. Из центра меньшей окружности проведен луч, перпендикулярный линии центров и пересекающий большую окружность, а из точки пересечения проведены две касательные к меньшей окружности. Найдите угол между касательными.

Тема «Многоугольники.

Вписанные и описанные многоугольники»

81. Гипотенуза прямоугольного треугольника равна 15 см. Найдите радиус окружности, описанной около треугольника.

82. Острый угол прямоугольного треугольника равен 37°. Найдите углы, под которыми видны катеты из центра описанной около него окружности.

83. Найдите радиус окружности, описанной около равнобедренного треугольника, боковая сторона которого равна 10 см, а один из углов равен 140°.

84. Постройте треугольник АВС по стороне АС = b, углу А и радиусу R описанной окружности.

85. Постройте равнобедренный треугольник по боковой стороне а и радиусу описанной окружности R.

86. Можно ли описать окружность около четырехугольника, углы которого, взятые последовательно, относятся как 2:3:4:11?

87. Найдите углы вписанного в окружность четырехугольника, если противоположные углы относятся как 2:3 и 4:5.

88. Постройте четырехугольник, который можно вписать в окружность, по трем его сторонам и одной диагонали.

89. В прямоугольный треугольник с острым углом 40° вписана окружность. Найдите углы, под которыми видны стороны данного треугольника из центра вписанной в него окружности.

90. Углы треугольника относятся как 2:3:4. Под какими углами видны стороны треугольника из центра вписанной окружности.

91. Найдите радиус окружности, вписанной в ромб, большая диагональ которого равна 18 см, тупой угол равен 120°.

92. Найдите длину окружности, описанной около прямоугольного треугольника с катетом b и прилежащим к нему острым углом a.

93. Найдите радиус окружности, описанной около трапеции, стороны которой равны 2 см, 1 см, 1см, 1 см.

94. Три последовательные стороны описанной около круга трапеции равны 13 см, 8 см и 13 см. Найдите радиус круга.

95. В равнобедренную трапецию с основаниями 18 см и 6 см вписан круг. Найдите его радиус и углы трапеции.

96. Докажите, что во вписанном в окружность четырехугольнике внешний угол равен противолежащему внутреннему углу.

97. Через точку А дуги ВС проведены две хорды АD и АЕ, пересекающие хорду ВС в точках F и G соответственно. Докажите, что четырехугольник DFGЕ можно вписать в окружность.

98. Докажите, что во вписанном в окружность четырехугольнике биссектриса внутреннего угла пересекается с биссектрисой противолежащего внешнего угла на окружности.

99. В треугольнике АВС биссектриса угла С пересекает в точке D перпендикуляр, проведенный из середины стороны АВ. Докажите, что около четырехугольника АDВС можно описать окружность.

100. Две окружности пересекаются в точках А и В; САD – секущая (точки С и D принадлежат окружностям). Через точки D и С проведены касательные до пересечения в точке Е. Докажите, что около четырехугольника ВСЕD можно описать окружность.

Тема «Геометрические преобразования»

101. Найдите центр симметрии заданных точек А и А1.

102. Докажите, что центр окружности является ее центром симметрии.

103. Дан луч ОА. Постройте фигуру, центрально-симметричную ему относительно точки О. Что это за фигура?

104. Докажите, что две пересекающиеся прямые, проходящие через две симметричные относительно центра точки, сами не симметричны относительно того же центра симметрии.

105. Докажите, что две прямые, проходящие через центр симметрии, отсекают равные отрезки от двух прямых, симметричных относительно этого центра.

106. Осевая симметрия задана парой соответствующих точек А и А1. Постройте ось симметрии а.

107. Постройте фигуру, симметричную данному треугольнику ОРR относительно оси l, если ОР пересекает l.

108. В некотором четырехугольнике средние линии (соединяют середины противоположных сторон) являются его осями симметрии. Определите вид данного четырехугольника.

109. Докажите, что точки пересечения двух окружностей симметричны относительно прямой, соединяющей их центры.

110. Точки Х и X1 принадлежат различным сторонам угла АОВ, причем ОХ = ОХ1. Докажите, что точки Х и X1 симметричны относительно биссектрисы угла АОВ.

111. Постройте фигуру, в которую перейдет квадрат АВСD при повороте вокруг точки D по часовой стрелке на угол 45°.

112. Постройте фигуру, в которую перейдет равносторонний треугольник АВС при повороте вокруг точки А против часовой стрелки на угол 120°.

113. Через центр О квадрата проведены два взаимно перпендикулярных отрезка, концы которых принадлежат сторонам квадрата. Докажите, используя поворот, что отрезки равны.

114. Медианы АА1, ВВ1 и СС1 треугольника АВС пересекаются в точке М. Точки А2, В2, С2 – середины соответствующих отрезков АМ, ВМ, СМ. Докажите, что треугольники А1В1С1 и А2В2С2 равны.

115. Через концы диаметра АВ окружности с центром в точке О проведены касательные, на которых по разные стороны от диаметра отложены два равных отрезка АС и ВD. Докажите, что точки С, D и О принадлежат одной прямой.

116. На каждой медиане треугольника построена точка, делящая ее в отношении 1:2, считая от вершины. Через эти точки проведены прямые, параллельные противоположным сторонам треугольника. Докажите, что эти прямые, пересекаясь, образуют треугольник, равный данному.

117. Две окружности (O; R) и (O1; R) касаются внешним образом в точке М. Через нее проведены две секущие АВ и СD, причем точки А, С принадлежат одной окружности, а В, D – другой. Докажите, что АС || ВD.

118. Точки М и М1 симметричны относительно точки А. Точки М1 и М2 симметричны относительно точки В. Докажите, что отрезок ММ2 = 2АВ.

119. Точки А и D, B и С симметричны относительно прямой l. Какой вид имеет четырехугольник АВСD? Докажите: а) AD || BC; б) АВ = СD.

120. Даны две пересекающиеся окружности равных радиусов. Секущая, параллельная прямой, соединяющей их центры, пересекает первую окружность в точках А и В, а вторую в точках С и D. Определите отрезок АС, если расстояние между центрами окружностей равно d.

Тема «Площади плоских фигур»

121. Площадь прямоугольника равна 520 м2, а отношение его сторон равно 2:5. Найдите периметр данного прямоугольника.

122. Стороны параллелограмма равны 5 см и 11 см. Найдите его площадь, если один из углов равен 30°.

123. Найдите площадь ромба со стороной 24 см и углом 120°.

124. Найдите площадь параллелограмма, периметр которого равен 42 см, а высоты равны 8 см и 6 см.

125. Найдите периметр ромба, площадь которого равна 48 см2, а острый угол равен 30°.

126. Найдите площадь равнобедренной трапеции, у которой основания равны 8 см и 18 см, а боковая сторона равна средней линии.

127. В прямоугольной трапеции большая боковая сторона равна сумме оснований, высота равна 12 см. Найдите площадь прямоугольника, стороны которого равны основаниям трапеции.

128. Стороны треугольника относятся как 3:25:26. Его площадь равна 144 см2. Найдите периметр данного треугольника.

129. Основание равнобедренного треугольника равно 5 см. Медианы боковых сторон перпендикулярны. Найдите площадь данного треугольника.

130. В прямоугольном треугольнике сумма катетов равна m, а гипотенуза равна с. Найдите площадь треугольника, не вычисляя его катетов.

131. В четырехугольнике АВСD диагонали перпендикулярны и равны 4 см и 11 см. Найдите его площадь.

132. Точка касания круга, вписанного в прямоугольный треугольник, делит гипотенузу на части, равные 4 см и 6 см. Найдите площадь этого круга.

133. Докажите, что медианы треугольника разбивают его на шесть равновеликих треугольников.

134. Найдите отношение площадей треугольника и четырехугольника, на которые рассекается данный треугольник своей средней линией.

135. Найдите отношение площадей кругов вписанного и описанного около данного равностороннего треугольника.

136. Гипотенуза прямоугольного треугольника равна с. Найдите площадь круга, окружность которого проходит через середины сторон данного треугольника.

137. Сторона АВ равностороннего треугольника АВС разделена точкой D в отношении 2:3. Из точки D опущены перпендикуляры DЕ ВС и DF АС. Найдите отношение площадей треугольника АВС и круга, описанного около четырехугольника DСЕF.

138. Прямоугольный треугольник, гипотенуза которого равна с, повернут около вершины прямого угла на 90°. Найдите сумму площадей, описанных при этом катетами.

139. Две окружности с радиусами R и 3R внешне касаются. Найдите площадь фигуры, заключенной между окружностями и их общей касательной.

140. Две окружности c радиусами R и 2R пересекаются, причем их общая хорда равна 2R. Найдите площадь, общую для кругов, определяемых данными окружностями.

Тема «Координаты и векторы»

141. Даны векторы: Найдите числа m и n, если .

142. Дан вектор