Самолеты


Реферат >> Авиация и космонавтика

Числовая последовательность - это функция, заданная на множестве натуральных чисел и принимающая дискретные значения (не непрерывные).{yn} - ограниченная, если существует такое M (M>0), что для всякого n выполняется нер-во: -M<=yn<=M. {yn}- возрастающая, если для всех n: yn+1>=yn. Последовательность монотонна если она строго возрастает или убывает.

  • Число А называется пределом {yn} при n стремящемся к бесконечности, если для всякого Е>0, как угодно малого, существует такой номер N, зависящий от Е (N=N(E)), что для всех n>N будет выполняться нер-во |yn-A|<=E. Достаточное условие: Если {yn} возрастает (убывает) и ограничена сверху (снизу), то последовательность имеет предел.

  • Число А называется пределом f(x) при x, стремящемся к x0, если для всякого сколь угодно малого числа Е существует б=б(Е)>0, что выполняется нер-во: |f(x)-A|<=E, для всякого х принадлежащего: х0<=x<=x0+б. f(x) - бесконечно малая, если lim f(x)=0, при х стремящемся к х0. f(x) - бесконечно большая, если lim f(x)=бесконечности, при х стремящемся к х0. f(x) - ограничена в данном интервале, если существует такое число М (М>0), что при всех значениях х, принадлежащих этому интервалу, выполняется |f(x)|<=M. Функция называется ограниченной при х стремящемся к х0, если в некоторой окрестности х0 она ограничена.

  • Пусть l, b - б.м. в некотором процессе и lim l/b=C 1)C не равно 0 и бесконечности => l, b - одного порядка малости. 2) С=0 => l - более высокого порядка малости. 3) С=бесконечности => b - более высокого порядка малости. Сумма двух, трех и вообще конечного числа б.м. величин есть величина б.м. Произведение б.м. на ограниченную функцию есть б.м. Частное от деления б.м. на функцию, предел которой отличен от 0, есть величина б.м.

  • Предел суммы двух слагаемых = сумме пределов этих слагаемых. Предел произведения двух множителей = произведению пределов этих множителей. Предел частного = частному от деления пределов, если только предел знаменателя не 0.

  • Если функция имеет предел, то её можно представить как сумму постоянной, равной её пределу и б.м. величины. Если функцию можно представить как сумму постоянной и б.м. величины, то постоянное слагаемое есть предел функции. Пусть есть f(x) и g(x) и существуют их пределы при х стремящемся к х0, равные соответственно А и В, и f(x)>g(x) в окрестности х0 => A>=B => lim f(x)>=lim g(x).

  • Если значения f(x) заключены между соответствующими значениями F(x) и Ф(х), стремящихся к одному и тому же пределу А ( при х стремящемся к х0), то f(x) при х стремящемся к х0 также имеет предел =А. 1-ый замечательный предел: lim sinx/x=1 при х стремящемся к 0.

  • 2-ой замечательный предел: lim(1+1/n)n=e, при х стремящемся к бесконечности. е=2,718…

  • Функция y=f(x) называется непрерывной в точке х0, если эта функция определена в какой-нибудь окрестности точки х0 и если lim дельта y=0, при дельта х стремящемся к нулю. Дельта у=f(x+x0)-f(x0).

  • Пусть f(x) и g(x) непрерывны в точке а, тогда их сумма (произведение) (частное, если g(a) не =0) тоже непрерывны в точке а.

  • Сложная функция - функция от функции. Сложная функция, состоящая из простых непрерывна, если непрерывны все простые функции. Функция непрерывная в замкнутом интервале, хотя бы в одной точке интервала принимает наибольшее значение и хотя бы в одной наименьшее. Функция, непрерывная в замкнутом интервале и принимающая на концах этого интервала значения разных знаков, хотя бы один раз обращается в ноль внутри интервала.

  • Если в какой-либо точке х0 функция не является непрерывной, то точка х0 называется точкой разрыва. Пусть х стремиться к х0, оставаясь все время слева от х0, т.е. будучи меньше х0, и если при этом условии значение функции f(x) стремится к пределу, то он называется левым пределом (правый аналогично). Точкой разрыва 1-го рода f(x) называется такая точка х0, в которой f(x) имеет левый и правый пределы, не равные между собой.(все остальные точки разрыва- 2-го рода).

  • Производной данной функции называется предел отношения приращения функции к приращению независимой переменной при произвольном стремление этого приращения к нулю: f'(x)=lim(f(x+дельта x)-f(x))/дельта х, при х стремящемся к 0. Производная характеризует скорость изменения какой-нибудь величины. Значение f'(x) равно угловому коэффициенту касательной к графику функции y=f(x) в точке с абсциссой х0.

  • Производная суммы конечного числа функций = сумме производных слагаемых. Производная произведения двух функций равна сумме произведений производной 1-ой функции на 2-ую и производной 2-ой на 1-ую. Производная частного 2-х функций = дроби, знаменатель которой = квадрату делителя, а числитель - разности между производной делимого на делитель и произведением делимого на производную делителя.

  • Производная сложной функции равна производной заданной функции по промежуточному аргументу, умноженный на производную этого аргумента по независимой переменной. Задание функциональной зависимости между двумя переменными, состоящее в том, что обе переменные определяются каждая в отдельности как функция одной и той же вспомогательной переменной, называется параметрическим.

  • Дифференциал функции называется величина, пропорциональная бесконечно малому приращению аргумента дельта х и отличающаяся от соответствующего приращения функции на бесконечно малую величину более высокого порядка чем дельта х (dy=f'(x)dx). Дифференциал dy функции y=f(x) в точке х изображается приращением ординаты точки касательной, проведенной к линии y=f(x) в соответствующей ее точке (x,f(x)). Дифференциал функции y=f(u) сохраняет одно и тоже выражение независимо от того, является ли аргумент u независимой переменной или функцией от независимой переменной.

  • Касательной к графику f(x) в точке называется предельное положение прямой, проходящую через данную точку, когда эта точка стремиться слиться с графиком f(x). Если значение производной от функции y=f(x) при х=х0 равно f(x0), то прямая, проведенная через данную точку с угловым коэфициентом, равным f'(x), является касательной к графику функции в данной точке.(y-y0=f'(x0)(x-x0)) . Нормалью к линии ее данной точке называется прямая перпендикулярная касательной. (y-y0=-1/f'(x0)(x-x0)).

  • Функция y=f(x) называется не дифференцируемой в точке х, если она не имеет в этой точке дифференциал.

  • Пусть f(x) непрерывна на замкнутом интервале [a,b] и дифференцируема во всех его точках и на концах отрезка она принимает значения f(a)=f(b), тогда существует такая точка С, что a<C<b и f'(C)=0. На линии f(x), где f(x) удовлетворяет условиям теоремы Ролля найдется точка касательная в которой || Ox.

  • Если f(x) непрерывна в замкнутом интервале [a,b] и дифференцируема во всех его точках, то в этом интервале существует хотя бы одно значение х=с для которого: f(a)-f(b)/b-a=f'(c). Если выполняются условия Теоремы Лагранжа, то касательная в данной точке будет || хорде связывающей точки интервала.

  • Т. Коши: пусть f(x) непрерывна на [a,b] и дифференцируема на (а,b);g(x) - удовлетворяет тем же условиям и g'(x) не =0 для всех х на этом промежутке, тогда существует точка С принадлежащая (a,b), что f(b)-f(a)/g(b)-g(a)=f'(c)/g'(c). Т. Лапиталя: Пусть функции f(x) и g(x) при х стремящемся а (или к бесконечности) совместно стремятся к 0 или бесконечности. Если отношение их производных имеет предел, то отношение самих функций так же имее предел = отношению произодных.

  • Т. Тейлора: Если f(x) обладает в замкнутом промежутке (a,b) производными до n+1-го порядка включительно, то f(b)=f(a)+f'(a)/1!*(b-a)+f''(a)/2!*(b-a)2+…+f(n)(a)/n!*(b-a)n+f(n+1)(c)/(n+1)!(b-a)n+1, где с - некоторое число лежащее между а и b. Rn = fn+1(c)/(n+1)!*(b-a)n+1 - остаточный член в форме Тейлора.

  • Формула Маклорена - формула Тейлора при а=0. f(x)=f(0)+f'(0)/1!*x+…+fn(0)/n!*xn+f(n+1)(C)/(n+1)!*xn+1.

  • Необходимое условие: Если f(x) в интервале возрастает (убывает), то ее производная f'(x)>=0 (f'(x)<=0). Достаточное условие: Если f'(x) от f(x) всюду на интервале положительна (отрицательна), f(x) в этом интервале возрастает (убывает).

  • Точка х=х0 называется глобальным минимумом (максимумом) f(x) на множестве m, если для всех х, принадлежащих m f(x)>f(x0) (f(x)<f(x0)). Точка х=х0 называется локальным минимумом функции f(x) если существует б-окрестность точки х0, что для всех х кроме х0 из этой окрестности будет выполнено f(x0+дельта х)>x0.Необходимое условие: пусть функция f(x) дифференцирована в точке х0 и ее окрестности тогда f'(x)=0.

  • Достаточное условие (1-го порядка): Точка х0 является точкой экстремума функции f(x), если производная f(x) при переходе х через х0 меняет знак.

  • Точки, где 1-ая производная обращается в 0 называют стационарными точками. Достаточное условие 2-го порядка: пусть точка х0 - стационарна и существует f''(x0) - непрерывна, тогда если f''(x0)>0 => x0- точка минимума.(f''(x0)>0 => x0- точка максимума.

  • Дуга называется выпуклой, если она пересекается с любой своей секущей не более чем в двух точках. Точкой перегиба называется такая точка линии, которая отделяет выпуклую дугу от вогнутой. Если х0 - абсцисса точки перегиба, то либо f ''(x0)=0, либо не существует.

  • Если f ''(x) всюду в интервале отрицательна (положительна), то дуга линии y=f(x), соответствующая этому интервалу, выпуклая (вогнутая).

  • Прямая линия называется асимптотой графика функции, если расстояние точки графика от нашей прямой стремится к нулю при неограниченном удалении этой точки от начала координат. Вертикальные асимптоты: если lim f(x)=бесконечности при х стремящемся к х0, то линия y=f(x) имеет асимптоту х=х0. Наклонные асимптоты: Если f(x)/x при х стремящемся к бесконечности стремиться к конечному пределу а и если f(x)-ax при х стремящемся к бесконечности стремиться к конечному пределу b, то линия y=f(x) имеет асимптоту y=ax+b.