Анализ технологии изготовления модуля сопряжения цифрового мультиметра с компьютером

контрольная работа: Коммуникации и связь

Документы: [1]   Word-104976.doc Страницы: Назад 1 Вперед

АНАЛИЗ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ МОДУЛЯ СОПРЯЖЕНИЯ ЦИФРОВОГО МУЛЬТИМЕТРА С КОМПЬЮТЕРОМ


1 Технологическая характеристика модуля сопряжения как объекта автоматизированной сборки и монтажа


Модуль сопряжения цифрового мультиметра с компьютером удовлетворяет следующим требованиям:

- радиоэлектронный модуль является функционально законченным и его изготовление, а также электрический контроль, можно организовать на специализированном участке;

- все электрорадиоэлементы со штырьковыми выводами располагаются на печатной плате только с одной стороны для обеспечения возможности применения групповой пайки окунанием платы;

- число вариантов формовки выводов электрорадиоэлементов ограниченно: для элементов с цилиндрическими корпусами и осевыми выводами применяется П-образная формовка и установка на печатной плате без зазора, для конденсаторов и транзисторов применяется I-образная формовка, для элементов в корпусах DIP типа формовка не производится;

- конструкция модуля исключает применение прокладок между элементами и печатной платой, экранов и изоляционных трубок на корпусах и выводах элементов;

- конструкция модуля исключает применение дополнительных креплений элементов на печатную плату.


2 Технологическая характеристика модуля сопряжения как объекта автоматизированной сборки и монтажа


Типовой технологический процесс разрабатывается для изготовления в конкретных производственных условиях типового представителя группы изделий, обладающих общими конструктивно-технологическими признаками. К типовому представителю группы изделий относятся изделие, обработка которого требует наибольшего количества основных и вспомогательных операций, характерных для изделий, входящих в эту группу. Типовой технологический процесс может применяться как рабочий технологический процесс или как информационная основа при разработке рабочего технологического процесса. Он уменьшает объём технологической документации без ущерба содержащейся в ней информации, создаёт возможность разработки групповых приспособлений и средств автоматизации, исключает грубых ошибок в нормировании материальных и трудовых затрат.

При разработке рабочего технологического процесса использован типовой технологический процесс, который состоит из следующей последовательности действий:

а) входной контроль электрорадиоэлементов;

б) лужение печатной платы;

в) промывка;

г) подготовка электрорадиоэлементов к монтажу;

д) установка элементов на плату;

е) флюсование;

ж) пайка узла;

з) контроль пайки;

и) ручная допайка;

к) промывка;

л) доустановка элементов на плату;

м) ручная допайка;

н) контроль функционирования.

1 - входной контроль электрорадиоэлементов; 2 - лужение печатной платы; 3 - промывка; 4 - подготовка элементов к монтажу; 5 - установка элементов на плату; 6- флюсование; 7 - пайка узла; 8 - контроль пайки; 9 - ручная допайка; 10 - промывка; 11 - доустановка элементов на плату; 12 - ручная допайка; 13 - контроль функционирования.

Рисунок 1.1 - Схема типового технологического процесса


3 Расчет показателей технологичности конструкции


Отраслевой стандарт ОСТ 4 ГО.091.219 предусматривает выбор состава базовых показателей. В число выбираемых должны включаться показатели, оказывающие наибольшее "ияние на технологичность конструкции блоков.

Основным показателем, служащим для оценки технологичности конструкции, является комплексный показатель технологичности , определяемый с помощью базовых показателей по формуле (1.1)


,                                        (1.1)


где:         - значение базового показателя;

- функция, нормирующая весовую значимость показателя;

- порядковый номер показателя;

- общее количество относительных частных показателей.

В качестве базовых показателей технологичности выбираем показатели, приведенные в таблице 1.1.


Таблица 1.1 - Базовые показатели технологичности

Порядковый номер в ранжировочной последовательности

Коэффициент

Обозначение

1

Использования микросхем и микросборок в блоке

1,000

2

Автоматизации и механизации монтажа

1,000

3

Механизации подготовки ЭРЭ

0,750

4

Механизации контроля и настройки

0,500

5

Повторяемости ЭРЭ

0,310

6

Применяемости ЭРЭ

0,187

7

Прогрессивности формообразования деталей

0,110


Для расчета комплексного показателя технологичности необходимо определить базовые показатели приведенные в таблице 5.1.

Коэффициент использования микросхем и микросборок вычисляется по формуле (1.2):


,                                                                        (1.2)


где:         - общее количество микросхем и микросборок в изделии, шт;

- общее количество электрорадиоэлементов, шт.

Подставив значения в формулу (1.2) получаем:


Коэффициент автоматизации и механизации монтажа рассчитывается по формуле (1.3):


,                                                                                (1.3)


где:         - количество монтажных соединений, которые могут осуществляться        автоматизированным или механизированным способом;

- общее количество монтажных соединений.

Рассчитаем коэффициент автоматизации и механизации монтажа:

.

Коэффициент механизации подготовки электрорадиоэлементов вычисляем по формуле (5.4):


,                                                                        (1.4)


где:         - количество электрорадиоэлементов, шт., подготовка которых к        монтажу может осуществляться механизированным или автоматизированным        способом.

Подставив значения в формулу (1.4) получаем:


.


Коэффициент механизации контроля и настройки вычисляем по формуле(1.5):


,                                                         (1.5)


где:         - количество операций контроля и настройки, которые можно осуществлять механизированным или автоматизированным способом;

- общее количество операций контроля и настройки.

Вычислим коэффициент механизации контроля и настройки по формуле(1.5):


.


Коэффициент повторяемости электрорадиоэлементов рассчитываем по формуле (1.6):


,                                                         (1.6)


где:         - общее количество электрорадиоэлементов, шт;

- общее количество типоразмеров электрорадиоэлементов в изделии.

Подставив значения в формулу (5.6) получаем:

.

Коэффициент применяемости электрорадиоэлементов рассчитываем по формуле (1.7):

,                                                         (1.7)


где:         - количество типоразмеров оригинальных электрорадиоэлементов в        изделии.

Подставляя значения в формулу (1.7) получаем:


.


Коэффициент прогрессивности формообразования деталей вычисляется по формуле (1.8):


,                                                                 (1.8)


где:         - количество деталей, шт., заготовки которых или сами детали получены прогрессивными методами (штамповкой, прессованием, литьем, пайкой, сваркой, склеиванием и др);

- общее количество деталей в изделии, шт.

После подстановки значений в формулу (5.8) получаем:


.


Подставляя значения рассчитанных базовых показателей технологичности в формулу (1.1) получаем:


Уровень технологичности конструкции блока определяется как отношение достигнутого показателя технологичности к значению базового по формуле (1.9):


,                                                                 (1.9)


где:        КБ - базовый показатель технологичности.


.


В соответствии с ОСТ 4 ГО.091.219 полученный нормативный комплексный показатель технологичности подходит для установочной серии.


4 Выбор оборудования для производства модуля и расчет технико-экономических показателей поточной линии сборки


Для выбора оборудования для производства воспользуемся данными, приведенными в [7].

Для производства:

- распаковка электрорадиоэлементов производится вручную на светомонтажном столе СМ-2 - производительность 1000 шт/час;

- входной контроль осуществляется тестером CMS100 - производительность 360 шт/час;

- автомат формовки, обрезки и лужения выводов резисторов, диодов, транзисторов и конденсаторов УФТ 901 - производительность 800 шт/час;

- установка электрорадиоэлементов производится на светомонтажном столе "Тройник-МтАЭ - число ячеек: для микросхем - 3, для электрорадиоэлементов - 10;

- пайка осуществляется окунанием платы в ванну с припоем на установке ТН 712, производительность 360 шт/час;

- очистка производится на установке УПИ 901, производительность 60 шт/час;

- функциональный контроль осуществляется устройством "Линза-11тАЭ, производительность 80 шт/час.

Рассчитаем такт выпуска каждого модуля, трудоемкость выполнения каждой операции, коэффициент загрузки оборудования.

Программу запуска изделия вычисляем по формуле (1.10):


,                                                                 (1.10)


где:         - программа выпуска изделий, шт.;

- коэффициент технологических потерь, принимается равным 1,02.

Подставляя значения в формулу (1.10) получаем:

Такт выпуска одного модуля определяем по формуле (1.11):


,                                                                 (1.11)


где:         - годовой фонд времени, ч;

- программа запуска изделий, шт.

Годовой фонд времени вычисляем исходя из следующих данных: количество рабочих дней в году - 250, рабочие работают в одну смену, продолжительность рабочего дня - 8 часов с 1 часом перерыва на обед. Следовательно годовой фонд времени составляет 1750 часов. Подставляя значения в формулу (1.11) получаем:


Трудоемкость операции сборки автомата определяется по формуле (1.12):


,                                                                 (1.12)

где:        T0 - трудоемкость выполнения каждой операции для одного элемента;

n - количество элементов, устанавливаемых на печатную плату при данной операции.

Трудоемкость выполнения каждой операции определяем по формуле (1.13):


,                                                                 (1.13)


где:        P - производительность оборудования.

Коэффициент загрузки оборудования определяем по формуле (1.14):


,                                                         (1.14)


где: КСН.Т - коэффициент снижения трудоемкости, принимаем равным 1;

КВ - коэффициент выполнения норм времени, принимаем равным 1.

Результаты расчета показателей поточной линии сборки приведены в таблице 1.2.

Маршрутное описание технологического процесса производства модуля сопряжения цифрового мультиметра с компьютером представлено в приложении в виде маршрутных карт.


Таблица 1.2 - Результаты расчета показателей поточной линии сборки

Операция

Оборудование

Производительность оборудования, шт/час

Трудоемкость, мин.

Коэффициент загрузки оборудования зЗО

Распаковка ЭРЭ

Светомонтаж-

ный стол

СМ-2

1000

1,2

0,01

Входной контроль

Тестер CMS100

360

2,33

0,033

Формовка выводов

Автомат формовки УФТ901

800

0,825

0,012

Установка ЭРЭ

Светомонтаж-ный стол "Тройник-МтАЭ

900

1,33

0,019

Пайка

Установка ТН712

360

3,33

0,049

Очистка

Установка УПИ901

60

20

0,29

Функциональный контроль

Установка "Линза-11тАЭ

80

15

0,22


Литература


1 Технология и автоматизация производства РЭА: Учебник для вузов/Под ред. А.П.Достанко.-М.:Радио и связь, 1999.

2 Технология производства ЭВМ - Достанко А.П. и др.:Учеб.-Мн.:Высшая школа, 2004.

3 Технологiчне оснащення виробництва електронних обчислювальних засобiв: Навч. Посiбник/М.С.Макурiн.-Харкiв: ХТУРЕ,2006.

4 Автоматизация и механизация сборки и монтажа узлов на печатных платах/А.В.Егунов, Б.Л.Жожомани, В.Г.Журавский, В.В.Жуков; под ред. В.Г.Журавского. -М.:Радио и связь,1988.

5 Гибкая автоматизация производства РЭА с применением микропроцессоров и роботов. - Ю.В. Иванов, Н.А. Лакота; -М.:Радио и связь,1988.

Страницы: Назад 1 Вперед