Исследование распределения температуры в тонком цилиндрическом стержне

курсовая работа: Математика

Документы: [1]   6041-1.doc Страницы: Назад 1 Вперед

Исследование распределения температуры в тонком цилиндрическом стержне

Курсовая работа по информатике

Исполнитель: Солнцев П.В.

Санкт-Петербургский Государственный Технологический Институт (Технический Университет)

Санкт-Петербург 2001

Введение

В решении любой прикладной задачи можно выделить три основных этапа: построение математической модели исследуемого объекта, выбор способа и алгоритма решения полученной модели, численная реализация алгоритма.

Цель данной работы - на примере исследования распределения температуры в тонком цилиндрическом стержне освоить основные методы приближённых вычислений, приобрести практические навыки самостоятельных исследований, существенно опирающихся на использование методов прикладной математики.

Постановка задачи

Физическая модель

В ряде практических задач возникает необходимость исследования распределения температуры вдоль тонкого цилиндрического стержня, помещённого в высокотемпературный поток жидкости или газа. Это исследование может проводиться либо на основе обработки эксперимента (измерение температуры в различных точках стержня), либо путём анализа соответствующей математической модели.

В настоящей работе используются оба подхода.

Тонкий цилиндрический стержень помещён в тепловой поток с постоянной температурой яБ±, на концах стержня поддерживается постоянная температура яБ±0.














1.2 Математическая модель

Совместим координатную ось абiисс с продольной осью стержня с началом в середине стержня. Будем рассматривать задачу (распределения температуры по стержню) мосле момента установления режима Т0.

Первая математическая модель использует экспериментальные данные, при этом измеряют температуру Ui стержня в нескольких точках стержня с координатами xi. Результаты измерения Ui рассматривают как функцию регрессии и получают статистики. Учитывая чётность U(x) можно искать её в виде многочлена по чётным степеням x (ограничимся 4-ой степенью этого многочлена).

(1.1)

Задача сводится к отысканию оценок неизвестных параметров, т.е. коэффициентов a0 , a1 и a2 , например, методом наименьших квадратов.

Вторая математическая модель, также использующая экспериментальные данные, состоит в применении интерполяционных формул и может употребляться, если погрешность измерений температуры Ui пренебрежимо мала, т.е. можно считать, что U(xi)=Ui

Третья математическая модель основана на использовании закона теплофизики. Можно доказать, что искомая функция U(x) имеет вид:

(1.2)

где яБмяАаяАняАакоэффициент теплопроводности, яБбяАаяАняАакоэффициент теплоотдачи, D - диаметр стержня, яБ±яАаяАняАатемпература потока, в который помещён стержень.

Ищем U(x) как решение краевой задачи для уравнения (1.2) с граничными условиями:

(1.3)

на отрезке [-L|/2;L/2], где L - длина стержня, яБ±яА°яАаяАняАапостоянная температура, поддерживаемая на концах стержня.

Коэффициент теплопроводности яБм зависит от температуры:

(1.4)

где яБмяА°яАаяАняАаначальное значение коэффициента теплопроводности, яБіяБмяАаяАняАавспомогательный коэффициент.

Коэффициент теплоотдачи яБбяАавычисляют по формуле:

(1.5)

т.е. как среднее значение функции

за некоторый отрезок времени от 0 до Т, здесь яБбяА°яАаяАняАазначение яБбяАапри t стремящемся к бесконечности, b - известный коэффициент.

Время Т0, по истечении которого распределение температуры в стержне можно считать установившимся определяется по формуле:

(1.6)

где а - коэффициент температуропроводности, яБёяАаяАняАанаименьший положительный корень уравнения:

(1.7)

Задание курсовой работы

Вариант № 136

Исходные данные:

L = 0.0386 м

D = 0,00386 м

яБ±яАаяАЅяАаяА·яАґяА°яАаоС

яБ±яА°яАаяАЅяАаяА·яАґяАаоС

яБмяА°яАаяАЅяАа141,85 (Вт/м*К)

яБіяБмяАаяАЅяАа2,703*10-4

яБВяАаяАЅяАа6,789*10-7

яБбяА°яАаяАЅяАа3,383*102 (Вт/м2*К)

яБФяАаяАЅяАа218 оС

А = 3,043*10-5 (м2/с)

11

X, м

U, oC

0

353

0,00386

343

0,00772

313

0,01158

261

0,01544

184

0,01930

74

2. Обработка результатов эксперимента.

2.1 Задача регрессии. Метод наименьших квадратов.

Ищем функцию регрессии в виде (1.1). Оценки коэффициентов находим с помощью МНК, при этом наименьшими будут оценки, обеспечивающие минимум квадратов отклонений оценочной функции регрессии от экспериментальных значений температуры; суммирование ведут по всем экспериментальным точкам, т.е. минимум величины S:

(2.1)

В нашем случае необходимым т достаточным условием минимума S будут:

Где k = 0, 1, 2. (2,2)

Из уравнений (2.1) и (2.2) получаем:

(2.3)

Сумма

Система (2.3) примет вид:

(2.4)

В результате вычислений получаем Sk и Vj. Обозначим матрицу коэффициентов уравнения (2.4) через "pтАЭ:

Методом Гаусса решаем систему (2.4) и найдём обратную матрицу p-1. В результате получаем:

Подставляя в (2.1) найденные значения оценок коэффициентов ак, находим минимальное значение суммы S:

Smin=0.7597

При построении доверительных интервалов для оценок коэффициентов определяем предварительно точечные оценки.

Предполагается, что экспериментальные значения xi измерены с пренебрежимо малыми ошибками, а случайные ошибки измерения величины Ui независимы и распределены по нормальному закону с постоянной дисперсией яБіяАІ, которая неизвестна. Для имеющихся измерений температуры Ui неизвестная дисперсия оценивается по формуле:

Где r - число степеней свободы системы, равное разности между количеством экспериментальных точек и количеством вычисляемых оценок коэффициентов, т.е. r = 3.

Оценка корреляционной матрицы имеет вид:

Оценки дисперсий параметров оценок коэффициентов найдём по формулам:

Где Sk - минор соответствующего диагонального элемента матрицы нормальной системы;

яБДяАаяАн главный определитель нормальной системы.

В нашем случае:

S0=3.5438 10-22

S1=-8.9667 10-14

S2=6.3247 10-7

Откуда:

Найденные оценки коэффициентов распределены по нормальному закону, т.к. линейно зависят от линейно распределённых экспериментальных данных Ui.

Известно, что эти оценки несмещённые и эффективные. Тогда случайные величины:

Имеют распределения Стьюдента, а r = 3.

Выбираем доверительную вероятность яБв=0,9 и по таблице Стьюдента находим критическое значение яБзяБвяАаяАаравное 2,35, удовлетворяющее равенству:

Доверительные интервалы для коэффициентов:

(2.4*)

В нашем случае примут вид:


2.2 Проверка статистической гипотезы об адекватности модели задачи регрессии.

Имеется выборка объёма n экспериментальных значений (xi;Ui). Предполагаем, что ошибки измерения xi пренебрежимо малы, а случайные ошибки измерения температур Ui подчинены нормальному закону с постоянной дисперсией яБіяАІяАояАаМы выбрали функцию регрессии в виде:

Выясним, нельзя ли было ограничиться многочленом второго порядка, т.е. функцией вида:

(2.5)

C помощью МНК можно найти оценки этих функций и несмещённый оценки дисперсии отдельного измерения Ui для этих случаев:

Где r1 = 4 (количество точек - 6, параметра - 2).

Нормальная система уравнений для определения новых оценок коэффициентов функции (2.5)с помощью МНК имеет вид:

(2.7)

Решая эту систему методом Гаусса, получим:

(2.8)

Чем лучше функция регрессии описывает эксперимент, тем меньше для неё должна быть оценка дисперсии отдельного измерения Ui, т.к. при плохом выборе функции в дисперсию войдут связанные с этим выбором дополнительные погрешности. Поэтому для того, чтобы сделать выбор между функциями U(x) и U(1)(x) нужно проверить значимость различия между соответствующими оценками дисперсии, т.е. проверить гипотезу:

Н0 - альтернативная гипотеза

Т.е. проверить, значимо ли уменьшение дисперсии при увеличении степени многочлена.

В качестве статического критерия рассмотрим случайную величину, равную:

(2.9)

имеющую распределение Фишера с(r ; r1) степенями свободы. Выбираем уровень распределения Фишера, находим критическое значение F*яБб, удовлетворяющее равенству: p(F>F*яБбяАй=яБб

В нашем случае F=349.02, а F*яБб=10,13.

Если бы выполнилось практически невозможное соотношение F>FяБб, имевшее вероятность 0,01, то гипотезу Н0 пришлось бы отклонить. Но в нашем случае можно ограничиться многочленом

, коэффициенты в котором неодинаковы.

3. Нахождение коэффициента теплопроводности яБб.

Коэффициент яБбяАавычислим по формуле (1.5), обозначим:

(3.1)

Определим допустимую абсолютную погрешность величины интеграла I, исходя из требования, чтобы относительная погрешность вычисления яБбяАане превосходила 0,1%, т.е.:

(3.2)

Т.к. из (3.1) очевидно, что яБбяАѕяБбяА°, то условие (3.2) заведомо будет выполнено, если:

(3.3)

Т.е. в качестве предельно допустимой абсолютной погрешности вычисления интеграла I возьмём яБдяАЅ0,001Т (3.4)

Т=218 оС, следовательно, яБдяАЅ0,218 оС.

3.1 Вычисление интеграла I методом трапеции

Использование теоретической оценки погрешности

Для обозначения требуемой точности количества частей n, на которые нужно разбить отрезок интегрирования [0;T] определяется по формуле:

, где MяАІяАЅ[fтАЭ(t)], t e [0;T], f(t)=e-bt3

Учитывая формулу (3.4) получаем:

(3.5)

Дифференцируя f(t), получим:

А необходимое условие экстремума: fтАЭ(t)-fтАЩтАЩтАЩ(t)=0, откуда получаем:

Далее вычисляем значения fтАЩтАЩ(t) при t=t1, t=t2, t=0 и t=T, получаем:

fтАЩтАЩ(t1)=1.5886 10-4

fтАЩтАЩ(t2)=-1.6627 10-4

fтАЩтАЩ(0)=0

fтАЩтАЩ(T)=7.4782 10-6

Итак: MяАІяАЅ1,5886 10-4, откуда n=25.66; принимаем N=26.

Далее вычислим интеграл I:

Погрешность вычисления яБб:




3.2 Вычисление интеграла I методом парабол

При расчётах будем использовать теоретическую оценку погрешности с помощью правила Рунге. Для обеспечения заданной точности количество частей n, на которое следует разделить интервал интегрирования можно определить по формуле:

, откуда:

Нахождение М4 можно провести аналогично нахождению М2 в предыдущем пункте, но выражение для fIV(t) имеет довольно громоздкий вид. Поэтому правило Рунге - наиболее простой способ.

Обозначим через In и I2n значение интеграла I, полученное при разбиении промежутка интегрирования соответственно на n и 2n интервалов. Если выполнено равенство: |I2n-In| = 15яБд яАияАкяА±яАй, то |I-I2n|=яБд

Будем , начиная с n=2, удваивать n до тех пор, пока не начнёт выполняться неравенство (*1), тогда:

(3.6)

Согласно формуле парабол (3.7):

Результаты вычислений сведём в таблицу:

n

In

I2n

4

102.11


8

101.61

0.5017

По формуле (3.7) I = 101,61 что в пределах погрешности совпадает со значением, полученным по методу трапеций

n=8

n=4

ti (8)

y8

ti (4)

y4

0

1

0

1

27.25

0.9864



54.5

0.8959

54.5

0.8959

81.75

0.6901



109

0.4151

109

0.4151

136.25

0.1796



163.5

0.0514

163.5

0.0514

190.75

0.0089874



218

0.00088179

218

0.00088179


4. Вычисление времени Т0 установления режима

4.1 Решение уравнения комбинированным методом

Время установления режима определяется по формулам (1.6) и (1.7).

Проведём сначала отделение корней. Имеем y = ctg(x) и y = Ax. Приведём уравнение к виду: A x sin(x)-cos(x) = 0. Проведём процесс отделения корня.


F(x)

-1

-0.6285

0.4843

x

0.01

0.05

0.1

т.е. яБёяАас [0.01;0.05]

Убедимся, что корень действительно существует и является единственным на выбранном интервале изоляции.

f(a) f(b)<0 - условие существования корня выполняется

fтАЩ(x) на [a;b] - знакопостоянна: fтАЩ(x)>0 - условие единственности также выполняется. Проведём уточнение с погрешностью не превышающей яБеяАЅяА±яА°яАняАґ

Строим касательные с того конца, где f(x) fтАЭ(x)>0

fтАЭ(x)=(2A+1)cos(x) - A x sin(x). fтАЭ(x)>0 на (a;b), следовательно касательные строим справа, а хорды слева. Приближение корня по методу касательных:

по методу хорд:

Вычисление ведём до того момента, пока не выполнится условие:

Результаты вычислений заносим в таблицу:


n

an

bn

f(an)

f(bn)

0

0.05

0.1

-0.6285

0.4843

1

0.07824

0.08366

-0.0908

0.0394

2

0.08202

0.08207

-9.1515 10-4

3.7121 10-4

3

0.08206

0.08206

-8.4666 10-8

3.4321 10-8


Т0 = 72,7176 секунд.

4.2 Решение уравнения комбинированным методом

Приведём f(x) = 0 к виду x = яБк(x). Для этого умножим обе части на произвольное число яБн, неравное нулю, и добавим к обеим частям х:

X = x - яБняАаf(x)

яБкяАиxяАйяАаяАЅяАаx - яБняАаA x sin(x) + яБняАаcosяАиx)

В качестве яБняАавозьмём:

где М = max [fтАЩ(x)] на [a;b], а m = min [fтАЩ(x)] на [aтАЩb]

В силу монотонности fтАЩ(x) на [a;b] имеем m = fтАЩ(а), М = fтАЩ(b). Тогда яБняАаяАЅяАа0,045.

Приближение к корню ищем по следующей схеме:

Вычисление ведём до тех пор, пока не выполнится условие:

(q = max |яБктАЩ(x)| на [aтАЩb])

яБктАЩ(x) на [aтАЩb] монотонно убывает, поэтому максимум его модуля достигается на одном из концов.

яБктАЩ(0,05) = 0,3322 яБктАЩ(0,1) = -0,3322, следовательно, q = 0.3322 < 1. В этом случае выполняется условие сходимости и получается последовательность:


i

xi

яБк( xi)

яБД xi

0

0.075

0.082392

0.00739

1

0.082392

0.082025

0.000367

2

0.082025

0.08206

3.54 10-5

3

0.08206

0.082057

3.33 10-6

4

0.082057

0.082057

3.15 10-7


Итак, с погрешностью, меньшей 10-4, имеем:

Т0 = 72,7176 с. , яБёяАаяАЅяАа0.03142


5. Решение краевой задачи

Используем метод малого параметра. Краевую задачу запишем в виде:

(5.1)

Введя новую переменную y = (U - яБ±яА°яАйяАпяАияБ±яАаяАняАаяБ±яА°яАй, запишем (5.1) в виде:

(5.2)

яБеяАаяАЅяАаяБіяБмяАияБ±яАаяАняАаяБ±яА°яАйяАаяАЅ0.18яАмяАаL/2 =0.0193. В качестве малого параметра возьмём яБе.

Тогда, подставив y(x) в уравнение (5.2) и перегруппировав члены при одинаковых степенях яБе, получим:

(5.3)

Ограничимся двумя первыми членами ряда:

Из (5.2) и (5.3) находим общее решение уравнения для y0:

где y0 с тильдой - частное решение данного неоднородного уравнения; y(1) и y(2) - линейно независимые решения однородного уравнения.

Корни уравнения:

y0общ = 1 + c1ch(px)+c2sh(px), где p = 0.01953

Константы найдём из граничных условий:

откуда с1 = 0, с2 = -0,57; т.е. имеем функцию:

y0 = 1 - 0.57 sh(px)

Общее решение:

Частное решение:

Дифференцируя и подставляя в уравнение, получим:

А1 = 0; А2 = -0,1083; В1 = 0; В2 = 17,1569;

Тогда общее решение для y1 имеет вид:

с3 = 0; с4 = 0,0462

Перейдя к старой переменной U, получим:

яБ±яА°яАаяАЅяАаяА°яА»яАаяБ±яА±яАаяАЅяАаяАняАіяА·яАґяАояА±яА±яА»яАаяБ±яАІяАаяАЅяАаяАняА±яАІяАояА№яАёяА¶яАіяА»яАаяБ±яАіяАаяАЅяАаяАІяА°яАµяА·

Итоговое уравнение:


Пользуясь этой формулой, составим таблицу значений функции U(x):

x

U(x)

U

0

352.9075

353

0.0019

350.4901


0.0039

343.1972

343

0.0058

330.9053


0.0077

313.4042

313

0.0097

290.391


0.0116

261.4598

261

0.0135

226.0893


0.0154

1836255

184

0.0174

133.2579


0.0193

74

74

Используя данную таблицу, строим график функции U(x).

[см. приложение 1]

6. Заключение

Решение задачи на ЭВМ при помощи вычислительной системы ManhCad 7.0 дало результаты (функцию распределения температуры в тонком цилиндрическом стержне), полученные по решению практического задания и обработкой эксперимента (функции регрессии), которые практически (в пределах погрешности) совпадают с экспериментальными значениями.

Список литературы

1. Методические указания "Методы приближённых вычислений. Решение нелинейных уравнений» (ЛТИ им. Ленсовета, Л. 1983)

2.Методические указания "Приближённые методы ислисления определённых интегралов» (ЛТИ им. Ленсовета, Л. 1986)

Методические указания "Изучение распределения температуры в тонком цилиндрическом стержне» (ЛТИ им. Ленсовета, Л. 1988)

Страницы: Назад 1 Вперед