378

2013
.. , ,
.. , , »
.. , , »
, ()
: ; ; ; ; ; .
: , . , . , , , , .
, . .
, , , . .
, , , , . .
, , , .
, .
, , , } 2 , , } 2 . , , , , .
.
, , , .
. , . , , .
~ 0
( = 1, 2,..., ).

VII /2 /]
II /21 /22 /
^/1 /2 . /
1,2,..., , (/ = 1.2..). .
() , .
. -

' ( > '), = 1,2,..., . > ' , , ] = 1,2,..., ( ).
> - >, >,
*
-, 7 = {, (): /)}. - .
- * , - .
- (\ /2, {1. 2.......10} =
(. 1).
yi . - 4, 5, 7, 8, /( /2 ( ). , -,
1
/ /2
1 1 1
2 0,4 2
3 2 3
4 1 4
5 4.5 3,6
6 4,3 1,8
7 5 3
8 6 1
9 3 2,6
10 3,5 2
. 1.

3>{2.1}.
Par
5 > {1, 2, 3, 6, 9, 10},
Par
7 >{l, 2,3,6,9,10},
Par
9 >{1.2}.

4 >{2.1}.
Par 6 >{l, 2}, Par 8>{1}.
Par
10 >{l,2}.
(. 4). .
- , (. 1).
. . 4
Par Par
, 4 > 1 , 4 > 2, {1, 2, 4}
Par Par Par Par Par
5 > 1, 5 > 2,5 > 3, 5 > 9, 5 > 10, . e. a5 {1, 2, 3, 5, 9, 10} . .
:

/
. 3
, . , , () , . 2.
- . , -, - . - .
, - (. 3).
: /} - , - , -
. 4
, - . - } 2 /; /_->, } 2 //. /2.
/; ; 2 .
.
1. - , .
2. - , .
2.1. .
:
/.(*)>. = 1,2,...,),

]- .
- , = 1,2,..., . , -
.
- (. 5).
: .
2.2. .
, . . .
2.3. .
. , , . , , , . .
: , .
. ,
(()= ,/, -,/) = 1,2,..., ).
, !)
%() = <\/2(\-/())
, .

<( = 1/1 + / + - + /*, =
= (; = 1,) = ^/' =
j=l
, > 0,' = 1, 2,..., - ,
]- .
>,*= @(*),/2(*),..., /(*))
\)

>() = 2 * = 1, 2, , > , >0- 0
1=1
* - .
. X , X - - .
X = (1,2,...,/), - - , /> = (1,2,...,/).
} = (, 2,..., ), - q-o , <7 = (1, 2, .
{,) - . , -. .
, ,
1 =(-*11 -12,---1,,12,-;
-2 ~ (_ 1~22 V,-'22122---2\
.

1 > 2 -
1.2 1.2 , < 2 1 > 2
= 1, 2,..., 1 = 1, 2,..., , . 1*.
- *
,,) = ( 1 +2+- + )
~(,+22+... + 11) =

= ,-^
=\ =
= 1, 2, .
-
(X**) = (-*X*,,...,), , -.
,
= (1,2, = (, 2,..., )
.
-. {X,,/},
X - ;
- ;
(\.) - , (, ) (, ) , X X , .
, .
.
. 4- : 20, 30, 40 50 . , :
1. , :
) - 100 . . ;
) -1,5 . . .;
) - 60 . . .;
) - 80 . . .;
: 255 . . .
2. , :
) 1- - 20 . . .;
) 10 - 60 . . .;
) 1- - 1,5 . . .;
) 1- - 250 . .
: 27,75 . . .
3. , :
) , - 250 . .
) , , - 250 . .
: 500 . .

2000 . . .

, . . X = {20,30,40,50}
, (). , . , , . X , . . = {1, 2, 3, ..., 50}.
f (, ) - , , . .
365 2000.

255000 + 27750 + 365 500.

f = 730000 - 27750 - 182500 - 255000 = 547500 -27750-255000.
. X
X = {1, 2, ... ... ,},={1,2, ... ... , }.
/?/', ]) = ,,, ,, - , / I. ] (. 2).
2
1 2 ]
1 @1
2 021 22 2 @2

2 &

( @2 (/ &
.
11 '\2, 11 , 12, . . ). > j = 1, 2,..., ,
/, > /2. ^ , 12 - .
.
.
. 3. ?

4 > 5 3 > 1, , , .
1 5 (. . . 3 1 5), .
3
, . , . , , .
, - .
- , , , .
- () . - , - .
:
]=1
, *) = /) ( = 1,2 ...,)
: .
.
, 4, .
4
1 2 3 4 5 L(i)
1 1 0 0 0 100 10,1
2 9,9 10 10 10 10,1 10
.
, 1,
1(1) > 1(2). , , , , 9,9.
( ) , . . , .

W_(i*) = min atj ,\<j<n,
W.
, W, . .
W(i*) = max W(/*) = max min a..
\<i<m \<i<m 1 <j<n
* , max min ., .
1 <i<m 1 <j<n j
().
: .
.
, . 5, .
5
1 2 3 4 W(i)
1 2 3 4 5 2
2 0 6 8 7 0
.
1 , , , 2 1.
, * W(/') = max .. , a
1 <]<
W(/') = min max aif -
1 <i<m 1 <j<n J
.
< < 1, .
, < < 1.
(/) = min . + (1 - ) max ...
1 <j<n 1 <j<n
= 1 » (. . ), = 0 - ».
: , ; .
(t/( ,) (/] ,)
- ( ).
1 2 3 4 5 6
1 5 3 4 2 1 2
2 1 2 5 4 3 3
3 7 6 7 3 1 2
4 1 2 4 4 4 5
5 1 2 3 4 3 5
i j , = . : -, . - . .
4 14 j 1 <i<m 1
.. , . j, , /3, = .., -
l<z'<m
/(,.
, , .
, , , . . . , , - , . .

1. , .. - : . / .. - .: , 1999.
- 320 .
2. . .. / . . - : , 1991. - 320 .
3. .., ..
4. -
// . : -
. 2012. 2. . 24-31.
5. .., .. // . : . 2012. 4. . 65-67.
6. / .. [ .] - .: ; , 1999. - 407 .
7. .. // . : . 2012. 4. . 92-94.
8. .., .. . , 2007.
9. .., .. // . : , . 2012. 4. . 323-325.
10. , . . : . / . . - .: , 2002.
- 144 .
11. .., .. . / , 2011.
461201
».
METHODS FOR FINDING OPTIMAL SOLUTIONS TO THE ECONOMIC MULTIOBJECTIVE OPTIMIZATION
2013
A.N. Yarygin, doctor of pedagogical sciences, professor of "Computer science"
N. V. Kolacheva, candidate of pedagogical sciences, associate professor of "Higher mathematics and mathematical modeling"
S. S. Palferova, candidate of pedagogical sciences, associate professor of "Higher mathematics and mathematical modeling"
Togliatti State University, Togliatti (Russia)
Keywords: multiobjective optimization, the ratio of Pareto dominance, generalized criterion, the loss function and the matrix of regrets, the principle of maximin.
Annotation: In most practical decision problems outcomes are evaluated not by one, but by several criteria. The main difficulty of logical analysis of multicriteria problems is that they have an effect incomparability outcomes. Incomparability of outcomes is a form of uncertainty, which, in contrast to the strategic uncertainty caused by the influence of the environment on the control object, by the desire to achieve the conflicting goals and can be called the value of uncertainty.