1. . . / . . , . . // . 2007. 5.
2. . . : , / . , . ; . . . . , . . . .: , 2007. 316 .
3. . . / . . , . . , . . ; . .
. . . .: , 2002. 227 .
4. . . / . . // . 2004. 3.
5. . . - » / . . // . .-. / .
. . . .: , 2007.
6. . . / . . . .: , 1984. 160 .
7. . . - / . . // . . 10. 2008. . 3.
8. . : . . / . . .: , 1984. 264 .
9. . . / . . [ .]. : ; : - . . -; : , 1992. 251 .
621.396 . . ,
. . , , . .

METHODS OF LINEAR APPROXIMATION OF BOUNDARY POINTS OF AREAS OF OPERABILITY OF TECHNICAL SYSTEMS
, . , .
The review of known methods of linear approximation of areas of operability of the technical systems which have been set by a set of boundary points is provided. Methods and algorithms realizing them are considered they allow to lower expenses of time and to expand scope of methods for any form of areas of working capacity.
: , , , .
Key words: working capacity area, technical system, linear approximation, boundary points of area.
3
3
() , , . . , [1].
( ) :
1) .
. .
, , . .
, , . Zv , X . Zv , ( ). , , Zv, , , (, , , , , . .).
( )
^<7]=^)<^,] = -,
^<2] V =; (1)
(1) (\ ), (\ ), . (2)
4 ' /7 ^ 4 /7 / 4
/- (/- ) , (X) .
(1). , , . , , . .;
2) .
, , ;
3) , , .
, , , . . ;
4) .
, . , , ;
5) .
.
. , . - [2]. 1- 2- , , , .
, » [3, . 41-50]. . (), :
.+>; < 0,./' = 1,, (2)
<=1
.., ; ; .
:
= 2( +1) + (N - -1) - N
N .
(2). . , , (2), . [3] , . ( + 1)- .
, , , . - ( , . , . , .
3
3
, . .
( + 1) [4, . 18-21]. , . , , , . , , . , . .
, » ( + 1) [5, . 17-22]. -:
+1 +1
= '. 5>'=1 >°,
5=1 5=1
- ^- .
= N - .
, . , ( + 1)- ,
= 0,5(#--1)(2( + 1) + (-1)(# --2)).
(1) ( + 1)- . , , , , [3; 4]. ( < 6), , . , , [3]. . , , , .
[6] , [7, . 167-174]. . . , . , , ( + 1) . . ( + 1)- , , -
, . ( + 1) , . , . .
. , , 2, ..., (. 1).
1 (. )
, = - .
2 (. )
, , ; ... ; ; = - , - - ... - .
1 2 12
3 (. )
, 0; = - .
4 (. )
; ; ...; , , 0; 0; ...; 0; = -
1 2 1 2
5 (. )
, 0; = .
6 (. )
1 ; 2 ; ...; , 1 0; 2 0; ...; 0; = 1 2 ... .
1, 3 . 2, 4 » ( 1-2 3-4 . , ), .
. 5, 6 . , , ..., . .
, ( < 10) . , , . , . , , , . , , .


3
3
46
. 1.

, ,
, . , [8; 9, . 120-131] - ^-.
, , . , (1). < 2( + + ).
, . [10, . 69-74; 11, . 58-69] . , , - [8] /], = 1 ,, <2( + ) , . , .
, = l,Nj /. , /. - :
- (^)1 .
= ^[,-,()] = , = .
, . N , . ^- ^ , :
+1 = °5( + +1 - - *+1|).
[12, . 61-67], .
, /. - [8]. = 2, / / N = 4 .
/ = /\ (X) = / (1, 2 ) = 0+ 11 + 22 + 1212,
=) = 1,2) = 0+1.+22+1212,
1 = [, + 122 (,)] [X, - X1 (,)] + [2 + 12 (,)] [2 - 2 (,)] = 0, 2 = [, + 122 (2)] [X, - X, (2)] + [2 + , (2)] [2 - 2 (2 )] = 0, = |> + 2 (,)] [X, - X, (3 )] + |> + , (3)] [2 - 2 ()] = 0, 4 = [1 + 2 (4)][-X, (4)] + [2 + X, (4)][2-2 ()] = 0,
= ! 2 4 = 0,25(! + 2 + + 4 - |! - 21 - | - 41 -
11 +2 - -4 +| -4| - -2||.

3
, / , .
* +1 =(+^1 - ++1 -2 ^(+
(^, +1) , -. (^, 8+1) = 1/(1 + ) [9; 12].
, , ( ) , , , .
<

|48|
R-
, . , , 1- 2- . , . , , , .
. , . .
1 \, , . , - 7- ( ) , 7, , , . ± (. - .77). . 2 . , 2, . , = 2 .
D, , .
. = , . < < 2, /, = \,1 . D ( - ) ,
I . < , , , , D. (1, ..., X, ..., ), = 1,, D.
, . . [13]:
: +4^0 *' = 1»5
) ) ) ) )
- ) . ) . ) , 4 = ) )
) ) ,) ) ) )
... ) 1
1
... ) 1
1
... ) 1
: [,.-() ]=0,/ = 1 ,.
=1
(3)
__
: 0+^^ = 1,,
(3)

0=-11().
1=1
/ , . -- [9] , . . , , [6; 7].
(), , N . , . , , .
, , . 2. :
N ;
, ( );
;
(), =1, ;
(), =1,^ , .
( N ), ^ = 1, = 1, 1 I = 1, . 2 .
3
/^ 2 , /^ .
. 2. ,
2 , .
3 = . , , .
4 , (), .
() , N .
- , , . .
> 30 . , -, , 12].

1. . . / . . -. .: , 2004. 126 .
2. . . / . . , . . . .: , 1974. 416 .
3. . . / . . [ .] // . . . ». 1972. 4.
4. Jarvis R. A. On the identification of the convex null of a finite set of points in the plane / R. A. Jarvis // Information processing letters, 2. 1973. 1.
5. . , / . . , . . // . . . ». 1974. 2.
6. . . / . . , . . , . . . .: , 1978. 88 .
7. . / . . , . . // . 2006. 1 (11).
8. . . / . . . .: , 2012. 272 .
9. . . / . . // . 2012. 3 (33).
10. . . / . . // (XXI ). ., 2012. 2.
11. . . / . . // . .: , 2010. . 1 (5).
12. . . / . . // . 2013. . 49, 1.
13. . . / . . , . . . .: , 2009. 206 .
3