4. Gonzales R. Digital Image Processing. Boston : Wesley, 2003.
5. Duda R., Hart P. Pattern Classification. New York : Wiley, 2001.
6. . . // : 16- . .-. . / . . -. -. , 2010. . 121-122.
7. . . - // - : XIII . . . / . . . -. 2 . . 2. , 2009. . 514-515.
8. Celik T., Ozkaramanl H., Demirel H. Fire and Smoke Detection Without Sensors: Image Processing Based Approach // Proc. of the Europ. Signal. Processing Conf. Poznan, 2007. P. 1794-1798.
9. Russel S., Norvig P. Artificial Intelligence: a Modern Approach. 3rd ed. Upper Saddle River, N. J. : Prentice Hall, 2010.
10. Celik T., Ozkaramanl H. Smoke and Fire Detection Using Video Sequence // Europ. Signal Processing Conf. Poznan, 2008. P. 197-200.
11. Cormen T. Introduction to Algorithms. Cambridge, Mass., 2006.
12. . . - // : VI . .-. . , / . . . -. , 2010. . 359-360.
13. . . - // : X . .-. . -, 2009. . 248-250.
K. E. Levtin
VISUAL SMOKE DETECTION BASED ON SPATIAL-TEMPORAL ANALYSIS
OF VIDEO SEQUENCES
A hybrid approach to visual smoke detection, based on spatial-temporal clustering of moving objects, is proposed. Visual smoke detection system, based on the algorithm of the hybrid approach, was developed and tested on a whole number of video materials. Conclusions and possible further investigations are offered in the end of this paper.
Keywords: visual smoke detection, spatial-temporal clustering.
^eBTHH K. ., 2012
519.682
. .

, , . , , . , , .
: , , .
, , . , , , ,
.
, [1]. ,
, , , , OLAP-, , , (, ), , , , : , , , .
[2] . .
, , [2], [3].
.
. , (, ) , , ( ), ( ), .
, , . . , , . . . [2].
, . . . .
(. 1):
1) (Levels) - F[L(i)[ ], _, _, _ ];
2) (Sections) - F[ _, (/')[ ], _, _ ];
3) (Nested Trees), , - F[ _, _, (/)[ ],_ ];
4) - ^[ _, _, _, ()[] ].
, . . . () () .
/ [4; 5]:
- - _[21)[ ], _, _, _ ];
- -^[20)[ ], _, _, _ ];
- -
*19)[ ], _, _, _ ];
- -
*18)[ ], _, _, _ ];
- - _[17)[ ], _, _, _ ];
- -
*16)[ ], _, _, _ ];
- - _[15)[ ], _, _, _ ];
- - _[14)[ ], _, _, _ ];
- - ^[13)[ ], _, _, _ ];
- - ^[12)[ ], _, _, _ ];
- / - _[11)[ ], _, _, _ ];
- - _[10)[ ], _, _, _ ];
- - [(9)[ ], _, _, _ ];
- - _[8)[ ], _, _, _ ];
- - _[7)[ ], _, _, _ ];
- - [(6)[ ], _, _, _ ];
- - _[5)[ ], _, _, _ ];
- - -[4)[ ], _, _, _ ];
- - -[3)[ ], _, _, _ ];
- - -[2)[ ], _, _, _ ];
- - ^[1[ ], _, _, _ ];
- - _[0)[ ], _, _, _ ].
/:
- ( - ) - ^[ _, (0)[ ], _, _ ];
- ( ) - _[ _, (1) [ ], _, _];
- ( ) - _[ _, (3)[ ], _, _ ];
- ( ) - ^[ _, (4)[ ], _, _ ];
- ( ) - ^[ _,
[ ], _, _ ];
- (, , , .) - _[ _, (6)[ ], _, _ ];
- ( ) - ^[ _, (7)[ ], _, _ ] .
, . . , , . .
. 1.
1

1 2 3 - - - -
: , , , - - , ( ) - - - - -
- - - - - - - - , - - () - - - - - - -
- Give 1
[] []
, ... - , - - - - - - -
. ( ):
- _[1)[ ], _,_,_ ] - , ;
- ( ) _[2)[ ], _, _, _ ] - , ;
- ( ) -[3)[ ], _, _, _ ] - , ;
- _[8)[ ], _, _, _ ] - .
(. 1).
, , , . , , , .
. , , , , . , {0, 1, 2, 3, ...}; ^[ _, (4)[ ], _, _ ]; ^[ _, (3)[ ], _, _ ], , , , {0, 1, 2, 3, ...} . , , , , . , - (), . . , . , .
. . .
. . , , . . . . , , .
. : . , . , , - , , - . . - . :
F[L(), ^(), ( ), ^( )]].
, : F[L(),
^() [ {, , , , ...}, {, ,
, , ...}, [ {1-, 2-, 3-, }, {, , , , }, ...]], (), ^() () [, , , ]] {in May, care of, the Internet, caring of, be the Internet, ...}.
. , , , F[L(), ^(), ( ), ^() [ {, , , ,
...}, {, , , , ...}, [ {1-, 2-, 3-, }, {, , , , }, ...]], ( ), ^() () [ , , ]] having + -ed, . .
- : F[L(-), ^() () [ {, , }, { {, , , ...}, {, , , , , . }, , . }, { {, , ...}, { , , ...}, ...}], ^( ), ^()].
. , {, , , , , .} F[L( ), ^(),
( ), _] *
F[L( ), ^(),
( ), _]
^() [---
/ , , , ].
-
. 2. -
2

the ... ... ... of the ... ... ... is over now
series game is left at the present moment
season : tournament starts : today
cycle Olimpic games goes on this week :
{, , , , , ...} ^[), ^() () [, , , , ] _, _ ]. _[), ^() () [, , , , ] + [ , , , , ], ^( ), _ ]: , , , . . , . . , .
, . , : _[),
^() (), ^( -
-), _]. . , , . , [2] .
[2]. . 2.
, - . : , , , , , . . - .

1. Automatic Expansion of Domain-Specific Lexicon by Term Categorization / H. Avancini, A. Lavelli, F. Sebastiani, R. Zanoli // ACM Transl. on Speech and Lang. Processing. 2006. Vol. 3, 1. P. 1-30.
2. . . // . 2009. . 4 (25). - . 33-37.
: . ... . . 4. . . . . :
: 05.13.17. , 2004. . ., 1983.
3. . . - 5. . . -
- . . : , 1990.
D. V. Lichargin
METHODS OF NATURAL LANGUAGE SENTENCES GENERATION BASED ON NATURAL LANGUAGE DATA FOREST
In the work the author describes models of sense bearing units generation, like natural language sentences, as means of solving the problems of computational linguistics. Therefore a hierarchy of informational units inherited by each other, based on the classification trees, is determined, with the features of the lower level classification. A semantic notional space of the natural language is defined, (corresponding to a symmetric tree) on each level and section of the forest of the natural language, where a set of functions and function trees are assigned, corresponding to the sense bearing sentences of the natural language, and other data, nested over the main classification, are assigned as well.
Keywords: natural language generation, system analysis, language words classification.
. ., 2012
519.62
. .
- ,

. - - , . , . .
: , , , .
, - , (). -. . , - . - . , , , (- ). - , 0808/ () .
- , . , , .
, [1]:
=211 +^ +^ +^ )dxddz, (1)
2 (V)
,
= +2= 2 _ X ,
~ ^ 2 2 , 2 ~ ^2 + ^ 2 ^ X .