- ,
, e-mail: gperminov@hse.ru

.
: , , , OLAP.

. .
. DSS (, 2009).
(1)
=1
Wi ;
, ;
. , /- , - ;
.
, , t , i'- , j- , :
(, 1971; , 1975; , 1975);
(Churchmen, Ackoff, 1954), (-, 1972; , 2003a; , 2003b);
(, 1996; , 2007), max(min) (, 1971), (, 1981), , » (Charsnes, Cooper, 1961), (Zeleny, 1973), (Thurstone, 1959), (Rosner,1956);
» (Szidarovsky, 1978), (Hwang, Lin, 1987), (, 2009);
(, 1997).
.
1.
, 88). , , . , () . » (, 2000). , . . , (, 2007; , 1990). ». . . -» (, 1972) . . () , . . , , , . .
, . , , , .
2.
(1) (, , 1981). , , .
3.
, , - , , . , . . . : -». , , . ». (, 2002):
;
.
, ( ) () ( ). . , . , .
( ) () , - .
. , , (, 2009) -
, (, , 1981). , : ».
, , . . , , . , » (, 2003). , , .

1. , . -, . -, , , .
2. , , , , , . . , .
3. , ? , .
, .

, . () : , , ().
. . (Bates, Granger, 1969) P. . (Newbold, Granger, 1974). , - , . , , , . .
, . . - . . , , :
.()) - , ,
, , - .
1, [0,1]. , , , , .
. :
1) , ( t 12 22);
2) , .
, , (1 ).
02
, , .
, , 02. (3) , , 22 :
= 0, , (4) :
(2)
<7 = k2al + (1 - )2 \ + 2 (1 - )2,
(3)
_ °2 0~|0~2
of +<22 +21
(4)
, k (4), 02 . . . (Bates, Granger, 1969).
, , , , , , . . . . . (, 1973), , .
, , :
*11 *21 1
X = 21 *22 2
xtl xt2 xtn
t = \,T n = LN
(6)
, , , ;
? , , , ; ;
, 1- , , - .
, , - ( = 1, 2, ... , ), , (). . .
:
xi=gif + ei,
(7)
. ;
/ , ;
g () / .; . ( ), , , , .
(7) . ( ) :
/ = 11+22+... + , (8)
, , . (080, 1960). , (8) / , :
1+122+.. + 1=1/
2\\ +2+ + 2 = 2/
......................... (9)
1<*1+22+... + =/
/ (7) 2.
2 =&+^2+.. + ^. ()
1 (8) /.

:
9 .
6.
() 4.
1- ( ).
.
:
. , , .
. , .
1-

1 2 3 4
1 7 3 5 2
2 6 1 3 1
3 5 2 7 4
4 4 6 2 7
5 8 4 1 5
6 9 7 4 9
7 2 5 9 8
8 3 9 8 3
9 1 8 6 6
4-

1 2 3 4
1 8 2 4 1
2 6 1 6 2
3 5 3 9 6
4 4 7 2 9
5 9 5 3 3
6 7 6 1 8
7 2 4 8 7
8 1 8 7 4
9 3 9 5 5
2-

1 2 3 4
1 6 2 2 3
2 7 3 4 6
3 5 1 8 2
4 3 5 3 9
5 9 6 5 4
6 8 8 1 8
7 1 4 7 7
8 4 7 9 1
9 2 9 6 5
5-

1 2 3 4
1 3 5 6 3
2 6 4 2 5
3 9 1 7 6
4 1 3 3 9
5 5 8 5 8
6 7 9 4 4
7 2 2 9 1
8 8 7 8 2
9 4 6 1 7
3-

1 2 3 4
1 9 1 3 2
2 5 3 5 5
3 6 2 9 3
4 3 6 4 8
5 8 5 2 6
6 7 8 1 4
7 4 4 6 9
8 2 9 8 1
9 1 7 7 7
6-

1 2 3 4
1 4 6 6 1
2 7 3 4 2
3 8 2 8 4
4 2 1 1 8
5 6 7 2 5
6 5 8 5 6
7 1 4 3 9
8 9 5 7 3
9 3 9 8 7
. 1. 9 , 6 4
. , ,
: ; ; . , 90 % .
1- 3 , 91,5 % ; 2- 3 (95,6 % ); 3- 3 (98,5 %), 4- 3 (97,8 %), 5- 3 (92,9 %) 6- 3 (92,9 %).
Component Score Coefficient Matrix , . . 2 Excel 2.
Microsoft 1 0@
-1
_ 1? X
4_. -| - | | . -
- - -
22 % =(:14170,3865+(6:14)180,3165+ 1
(6:14)*1 943.2533
2 2
3
4 1 2 3 4
5 1 6 2 2 3
6 2 7 3 4 6
7 3 5 1 8 2
4 3 5 3 9
5 9 6 5 4
10 6 8 8 1 8
11 7 1 4 7 7
12 8 4 7 9 1
13 9 2 9 6 5
14
15
1 .
17 1 -0,14702 -0,09512 -0,48037 0,660814
18 2 0,811639 0,07359 -0,30557 -0,27283
19 3 0.07659 1.009033 0.094007 -0,01979
20
21
3.5 -- 10.411371 11.12015 6,687967
23 0-1 .: 558 0,281516 0,300681 0,186245
24 2 1 4 1
/ 2 / 3 1 4 / 1 \ _2 / / < |
1 ; - [$ I - \ 4 11 -. ~ ^ -
| ;-1
. 2. 2
. 3 4. . 3 , . , , , .

-1
-2
- -3
-4
1 2 3 4 5 6

. 3.

1 2 3 4
1 0,223219 0,190855 0,304075 0,281851
2 0,231558 0,281516 0,300681 0,186245
3 0,366523 0,196157 0,193941 0,243378
4 0,364774 0,167974 0,221625 0,245627
5 0,288563 0,259736 0,255741 0,19596
6 0,200074 0,347184 0,186472 0,26627
. 4.
. ,
, , , (. 5). , . . 6 . , , . 30 % +40 %, .
. 5. 6

160
X 141)
) I 120
100
80
60
40
3 20
. 0








<$'
/ ? /
V <
- _1 _2 -_3 -_4
. 6.
OLAP
, »? : 1) 2) . . OLAP : - (. 7).

1 2 3 4
1 10,04487184 8,588487065 13,68336302 12,68327807
2 10,420113 12,66820904 13,53063054 8,381047423
3 16,49352769 8,827086472 8,727361572 10,95202427
4 16,05003711 7,558832518 9,973142916 11,05321388
5 12,98534366 11,6881292 11,50833101 8,818196132
6 9,00333578 15,62326334 8,20477485 11,98215387
74,99722909 64,95400763 65,6276039 63,86991365
. 7.
4 : OLAP , (. 8 3 ).
1 2 3 4
_1
. . OLAP 0,22321937 0,19085527 0,30407473 0,28185062
0,19301239 0,14110088 0,35816412 0,30772261
0,22321937 0,19085527 0,30407473 0,28185062
_2
. . OLAP 0,23155807 0,28151576 0,30068068 0,1862455
0,22369287 0,29991317 0,34204587 0,13434809
0,23155807 0,28151576 0,30068068 0,1862455
_3
. . OLAP 0,36652284 0,19615748 0,19394137 0,24337832
0,4981736 0,1426883 0,13948244 0,21965566
0,36652284 0,19615748 0,19394137 0,24337832
_4
. . OLAP 0,35958229 0,16934679 0,22343659 0,24763432
0,4918603 0,12300472 0,1778831 0,20725188
0,36477357 0,16797406 0,2216254 0,24562698
_5
. . OLAP 0,28856319 0,2597362 0,25574069 0,19595991
0,33140872 0,21638678 0,25839493 0,19380957
0,28856319 0,2597362 0,25574069 0,19595991
_6
. . OLAP 0,20090665 0,34862828 0,18308701 0,26737805
0,17960974 0,3955671 0,11767312 0,30715004
0,20007413 0,34718363 0,18647216 0,26627009
. 8.
6 : OLAP ( 1 ) , , (3- ). , , .

? : )
) . .
, 90 % 5 . , 6 4 , . 9.

_1 _2 _3 _4 _5 _6 _7 _8 _9
2,9666 1,9622 3,0009 1,7323 3,6166 3,0405 3,5580 3,9247 5,1270
0,1025 0,0678 0,1037 0,0599 0,1250 0,1051 0,1230 0,1357 0,1772
0,1369 0,0194 0,0955 0,0367 0,1692 0,2031 0,0741 0,1269 0,1382
3 2 4 1 7 5 6 8 9
6 1 4 2 8 9 3 5 7
. 9.

, , .

, , , . , . -30...+40%. OLAP , , , , .

Bates J. ., Granger . W J. The Combination of Forecasts // Operations Research. 1969. Vol. 20. . 4. P. 451-468.
Charsnes A., Cooper W. W. Management models and industrial applications of line programming. N. Y. : Wiley, 1961.
Churchmen C. W., Ackoff R. An approximate Measure of Value // Operations Research. 1954. 2. . 172-181.
Hwang Ch.-L., Lin M.-J. Group decision making under multiple criteria. Methods and applications. Berlin : Springer-Verlag, 1987.
NewboldP., Granger C. W. J. Experience with Forecasting Univariate Time Series and Combination of Forecasts // Journal of Royal Statistical Society. Ser. A. 1974. Vol. 137. 2. P. 131-164.
Rosner B. S. A new scaling technique for absolute judgment // Psychometrica. 1956. Vol. 21. 4. P. 377-381.
Szidarovsky R. I. Use of cooperative games in a multi objective analysis of mining and environment // International Conference. Madrid, 1978,. P. 11-15.
Thomson G. H. The factorial analysis of human ability. London : University of London Press, 1960.
Thurstone L. L. The measurement of values. Chicago, 1959.
Zeleny M. Compromise programming in M. K. Starr and M. Zelleny. Columbia, 1973.
. ., . ., . ., . . // . 1997. 8. 1997. . 3-35.
. ., . ., . . : . : , 1990. . 184.
. . . . : , 1971. . 324.
. ., . . . . : , 1975. . 280.
. ». 2009. [ ]. URL: www.pavel.gorskiy.ru ( : 30.06.2011)
. . // : . . 22-23. . : , 1973. . 87-105.
., . . . : , 1972. . 234.
. ., . . . : , 1981. . 342.
. . . // . 1971. 4. . 25-31.
. . . . . : , 2002. . 144.
. . . . : , 2009. . 400.
. . The problem of estimation of importance factors as a symmetric-lexicographic problem of optimization // Automation and Remote Control. 2003. Vol. 64. 3. P. 480-492.
. . . . : , 2007. . 64.
. . -- // . 2003. 3. . 150-162.
. . // . 1972. . 12. 6. . 568-571.
. ., . ., . ., . . // 1- . . : , 1996. . 82-86.
. ., . . // . 1975. . 11. 7. . 17-20.
Determination of choosing best decisions and importance coefficients of criteria by the extracting of generality in decision-making problems
Gennady I. Perminov
Assoc. Business Analytics Department, SU-HSE,
Moscow, Russia e-mail: gperminov@hse.ru
This paper aims to consider the possibility and necessity of the importance coefficients of criteria and determination evaluation of alternatives, using the method of extracting of generality in the multicriteria choice problems of decision-making support.
Keywords: the importance coefficients of criteria, decision-making problems, the method of extracting of generality, OLAP.