2013 1
539.3
.. , B.C.
- --
, ,

, , . . . . - . , .
, . . , . . . . , . . : , ( ) .
: , , , , , , .
L. Yu. Frolenkova, V. S. Shorkin
State University-Education-Science-Production Complex,
Orel, Russian Federation
METHOD OF CALCULATING THE SURFACE AND ADHESION ENERGIES OF ELASTIC BODIES
There are a number of problems for successful solutions to be aware of the surface energy, the energy and the force of adhesion and cohesion. An example is that of the bundle composites. The expression of the energy strength criterion is the total surface energy of the contacting elements or energy of adhesion. These values are determined by methods of the classical theory of elasticity is impossible. Power strength criteria using the limit values of powers - forces of adhesion and cohesion. They are usually determined experimentally, it is not always possible or economically unprofitable.
The authors proposed a method for calculating the surface and adhesion energies of elastic bodies in a state of adhesion. It was considered by the authors as follows. Distributed over the boundary of the total surface energy is distributed over its volume free energy change occurring during the formation of the border. The adhesion of the two bodies along the contact surface is formed by a transition layer. In its physical and thermodynamic properties of one body continuously into the properties of another body. The method is based on a variant of the gradient model of continuous elastic medium. It is based on the assumption of many-potential nonlocal interaction infinitely small particles that make up the environment. More to the classic characteristics of the elastic state is calculated by differentiating the known expression bulk density of free energy. It is built on the basis of additional assumptions about the composition of the medium: the elastic part, the phonon and electron (for metals) gases.
Keywords: adhesion, thermoelasticity, nonlocal multiparticle interaction, gradient, surface energy, adhesion, transition layer.

, , . , . .
[1]. , . (, [2-8]).
, , .
1.
.
B(1) {1) - ,
A(12); P{k) = { pn(k)| , n = 1,...,N - , k=1,2; Qk) =|qm{k)| , m =1,...,M - -
. {) () ,
(). ^
(2) {12),
() qm(k),
. ( ).
12) = { (2^
0;12) ={ ()} (1) (2). {12) () ( - - ) , . 2) ,
. (1 2)()
.
, [9].
() = 0() , , .. , . (+1)=()
)...() dB0^k^ = dB^, dV0(k) = dV^^, =1,2 -
=1,2 . ( )
()) =(,) (^0(),^1(),...,^(),+1(),...,)) (1.1)
.
, [9] , ())
() - 0() 0()
0() 9()
( 9=1,...,). ()) , ( ) - 0() . 0().
(1.1) ( =) ( ) . 0{) = {gi(kp)| ,I=1,...,I, [9, 10].
19(,) = 9() -0(), 0() = () .
L9() = () _ 0() = (9() _0()) + (9() _0()) = 19() +?(
^0() = ^() , 0() = () 9 () = 9 ( ) - (). ^ ()(())=()(() + \{ )) 1?(). 9(,) = 9() - () () ^^)
~ 7'
-| 4 19(,)
- ; () - ; ... -
; 1 V7' - - 1 V ; = .../ - ,
3
V7 () X ( )...7 ,1 ,...,7 =1
V 7 ,*)
; (V7') - -
= (,/), 1 = 0.
-|1/2
- V7 () ( -
,) , =1,2,3);
1,2 3, (=1,2,3)).
,
7-1 1 7 = 1,2,..., (1.2)
- , .
(1.2) , (1.1), , , ( ^() = ,(^ ^*) = (*) = ()),
()), ,() - .

()) =(!))(,(-))+2 1()1,()))(,)), (1.3)
-1 2* ,-1
VI, = .../,, \ 1, = 2/,1,.
0() -
^
, ~ - () 1() 0()
() = 0() +^(). , =-----1.
0() 0()
, ()
, , , ,). , -)
) , , .
^) = { ()|, = 1,..., () | () |, , (»>{7}) 5(: ^ ^}) .

V(pif-v{pi-v{ptP>-...)))+^ = , , 1-4)
, = 1, 2, 3, ... - ; ^) - ; () - ; () - . /=/0-) ,), -^:
(/ 4 = () 5 ( ))
(,/0()) 0(7 , 0/
= V,
0( )
()
(1.5)
-) ,) ( ,) -
)

()

( )
-

2)
( )'\ )
; (1.6)
~^
-)($)-)]=<> ; 1-7)
= -) - ; , =1,2,... -
,
, : ,.....
(1.4)-(1.7) ,

( )
=1-?{ $-?{ !~ )
(1.4)(1.7)


*)= °()-()+^(/) ,). (1.8)
=1
,

5 = 5 + ^_)<_> + » (1.9)
=1 70
( - )
, () = ()^(^{7()})
. , (1.3). (1.8),
(1.9)
(1.10)
() ()()
=------8^_=_^1. (1)
() 50
(1.10) (1.11) , {)= 70(), "() = 0.

X--(2 )- -0 3() = -. (1.12)
1 ; 0 ^ v 7
- . = 0. .
[11], , . [10]
= + 1 + . (1.13)
- - [12]. (1.13) - ,
(2)) , , , [9, 13] ,
(2) _ (2) /_2(,) (,) _ 2 -( ,) 1( ,
^(, )-^0( , 2 ;.
- [14]
-1 , .
^() ^( ) |_2(.) ( ,) _ 2 _( ,)( ,
^( , )~*0(,) 1 2 ).
.
= ( ), () [9, 15] /0( ),
^).
02) 0() ) () [9].
, (1) (2) .
2.

[16].
( )
, = / ,

[17-22], . [16] V . - , - ,
V w ( w=^(), . , - - V , = |wdV), ,
V
, ( w V):
\ = ^&. (2.1)
V
, (, [23, 24]). [1, 22] V (1,2,3)
V: 0 < =(<+ , <>< 2, <+; : = 1= 0. (2.2)
.
W = Wp (R) A. a = a (R), V, , A
Wp = n-a, a-n (n-a) = 0. (2.3)
(2.1),
jn-a dA = JwdV, jdiva dV = JwdV. (2.4)
A V V V
a = a (R) -
^ = ^(R), RV, [25],
a=grad Y, (R)r<a = 0. (2.5)
(2.1) B A. (2.5) (2.4) = (R) :
divgrad W = w, W (R)ReA = 0 . (2.6)
(2.6) . , -
(2.3)-(2.6) A.
, V (2.2) ( ), w A, (2.3)-(2.6)

Wp = Jw(x)d . (2.7)
0
, [1, 22].
(2.3) (2.6) (2.7) , w= <), .
{) ) , (). ()
, ()
, () 0.().

() ) . , W() ()
- (1.4)-(1.12).
, (1.4)(1.12) / , , (1.4)
(1.12) , .
() ,
.
3.
^ ^
.
: ^ "21 ^ , . ^ ^ Wp^ .
» ^ ^ » 2) (21) ^ ° .
. - , , . , .
, , ^ ^ . ^ ^
.
. 2) (21 "
(12) ^ ^ , . .
, 2) 1) . -
[2, 4, 5], .
, . , = 0, , . [7, 8, 26]. , » [27].
, ^ ^ 0^ / = 0. / = 0+0
, >
^ ^

. , ^ , ^ -
={1) (2).
^ ^ ( )
, . ^ ^, =1,2, ,
^ ^ ^, ^2 ^,
^ ', =1,2,
&{}1 {}, (}2 [), ^ [), {)
^^, ^2 .
.
, , , (2.8), , :
2
^ ^1,2) = | ^ (1,2) = | ^()^() =
(1,2) =1 V )
2 -1
= X | (1)(^()(,),".,4-1(,))^1() '...'^^^) ~
=1 7=1 %)
2 -1
77+ \<^{(k,P)(T0(k),(,),,^(,))&) ^^dVn-1(p). , =1 7=1 (7 + 1)!^( ,
^ ^
(12). , , .
={1) {1), V = (1) (1),
^ ^.
?() = () - ^() - () /, ), -
( ^). - ^^ () ^ ) ^^ , , , ^. , ^, = 1,2, = (1) (2) (2.1)-(2.7)
, . (2.7) ^ ^ . ^1 ^ () (/, ). , , ^()(/, ) . , () ,
, (2.4), (2.5).
, {)(/,),

(3.1) . (3.2) () 2) .
[28]
^(^>)(2)(> )> 4(1,2);
) ='('2)( ) ^1,2).
(3.1)
(3.2)
2) =(1) (2). . .
(2) -
(12), (12) = (1) (2) ^. = (1,2) -(1) ~(2).
()(/, ) ?() (/, ). .
()
(1.4) (1.12) (1.8)(1.11). (1.8)(1.11), (), . ,
, (). ,
(1.10), (1.11) ,
, , ? [12].
{) (1.6), (1.7) , , -
{)
() = () ^) ---= ?() ( ( ()
( )
). (12) .
^ + ^ + "
^(1 0(1)_ (2) 0(2) (1)

41)
+-
0(1)
=
'(2)
)
(2) 0(2)
- +
(3.3)
(1) ()- (2) () = () + () , (1,2) ;
(1) --2)--( ^)=() --)--( ; (3.4)
(1)()_(2)()=(), ()=()()+8()(); = ?; (3.5)
^(1) = ^(2) ; ^(1) = (2) . (3.6)
, = (1) (2), {) (2),
X
X
((1,2) (1) ) $(1) +((2,1) (2)) ^2)} + {_(1,2) '(1)) 1)) )
(0,2) )] 8 + [(2 ($>-V-/(<2» )- ((2 ?)] 6(2)} + (3.7) +{((1,2) )"8 (V, 1 )+((2 ,2,' )-8 (-(2))} +... = 0.
, . . , , -, (3.6). -, . -, , .
) =2);5(1)= 5(2);5((1))=^^
(3.8)
, . (3.3)(3.5). (3.7) (3.8) (3.3)(3.5).
(3.4), (3.5) : ---------,

0(1) - 0(2), (), (), (), (). . (3.6) (3.2), , () () (12)
. , , .
4. .
.
. , . , 0,25.
)
/ , , .
(): {) -. ()
() : 0 < ()1 < ()1 , () 2,3 < () 2,3 <+ ()2,3 .
, ()1 = 0 , {)1 = {)1 , ()23 =±()23 : {)123 , () (), .
() ),
, , () . ,
) ()1 = 0 2 ),
. (}, 2},
. 2 ) () ()1, - . () -
^) = 0,
) .
, , .
() .
, , , .
.
, () = 0, () = 0. ,
() = ()(^ , = 1,2, * .
[1, 22]. .
.
(2.1)

()= |%)^) = )(()1)dx{k)l (4)
( )1'2^0 4) ^} 0
(2.4)-(2.7).
,
2 2
(1,2) = ^ X I ^()^() = \^() (()1)^()1 . (4.2)
()1-2-3^ (1,2) =1 ^) =1 0
2) , (5.1) (5.2), [16]
= - -
''(1,2) (1) (2) .
(2.5)(3.2) .
. : - [23]; ^ - ,
, , , , .

(1) - ~ , , 2
-1 2,78 2,75 [29]
- 3,46 4,00 [29]
- 5,06 4,85 [29]
3,09 2,9 [30]
1-1 2,76 2,15 [30]
-1 2,82 2,67 [30]
- 4,80 4,14 [30]
- 3,72 4,26 [30]
2.479.2011.

, .
, , .
, , .

1. .. // . - 1979. - . 128. -. 1. - . 69-106.
2. . . - .: , 1989. - 510 .
3. .. // . -1980. - . 44. - . 1. - . 122-129.
4. .. . - .: , 2001. - 478 .
5. .., .. // . - 2001. - 65. - 2. - . 279-289.
6. .. // . - 1970. - . 100. - . 2. -. 329-347.
7. .., .., .. // : . . . - 2008. - 16. - . 75-85.
8. .., .. // . -2007. - . 13, 4. - . 519-534.
9. B.C. // . - 2011. - 6. - . 104-121.
10. B.C., .., .. // . - 2011. - 2. - . 2-7.
11. .. . - .: , 1970. -. 2. - 568 .
12. . . - .: , 1975. - 384 .
13. .., .. // . - 2002. - . 3. - 2. - . 254 - 276.
14. .., B.C. // . - 2009. - 8. - C. 65-71 [ ]. - URL: http://zhurnal.ape.relarn.ru/ articles/2009/008.pdf.
15. . . - .: ,
1978. - 792 .
16. . - .: . , 1960. - . 1. - . 19.
17. .., .. . - .: , 1976. - . 5. . . I. - 584 .
18. .. . - .: . - .-. ., 1954. - 220 .
19. . . - .-.: . - .-. ., 1963. - 312 .
20. . . . - .: , 1978. - 400 .
21. .. . . - .: , 1982. - 584 .
22. .., .., .. // . - 1987. - . 151. - . 2. - . 341 - 376.
23. .. . : . - .: , 1976. - 600 .
24. .. // . - 2004. -. 46. - . 5. - . 924-937.
25 . . - .: , 1976. -
320 .
26. .. . -.: . 1967. - . 388.
27. .., .., .. . - .: , 1991. - 176 .
28. . . - .: ,
1979. - 568 .
29. .. // . - 1997. - . 39, 6. - . 964-967.
30. .. , - // . -2012. - . 54. - . 7. - . 1335-1341.
References
1. Partenskij M.B. Samosoglasovannaja jelektronnaja teorija metal-licheskoj poverhnosti [Self-consistent electron theory of a metallic surface]. Uspehi fizicheskih nauk, 1979, vol. 128, no. 1. pp. 69-106.
2. Dzhonson K. Mexanika kontaktnogo vzaimodejstviya [Mechanics of contact interaction]. Moscow: Mir, 1989. 510 p.
3. Kravchuk A.S. K teorii kontaktnyx zadach s uchetom treniya na poverxnosti soprikosnoveniya [To the theory of contact tasks taking into account friction on a contact surface]. Prikladnaya matematika i mekhanika,
1980, vol. 44, no. 1, pp. 122-29.
4. Goryacheva I.G. Mexanika frikcionnogo vzaimodejstviya [Mechanics of frictional interaction]. Moscow: Nauka, 2001. 478 p.
5. Goryacheva I.G., Makhovskaya Yu.Yu. Adgezionnoe vzaimodejstvie uprugikh tel [Adhesive interaction of elastic bodies]. Prikladnaya matematika
i mekhanika, 2001, vol. 65, no. 2, pp. 279-289.
6. Rajzer Ju.P. Fizicheskie osnovy teorii treshhin hrupkogo razrush-enija [Physical principles of the theory of brittle fracture cracks]. Uspehi fizicheskih nauk, 1970, vol. 100, no. 2, pp. 329-347.
7. Lure S.A., Belov P.A., Solyaev Yu.O. Adgezionnye vzaimodejstviya v mexanike sploshnykh sred [Adhesive interaction in mechanics of continuous media]. Sbornik nauchnyx trudov "Matematicheskoe modelirovanie sistem iprocessov". Moscow, 2008, no. 16, pp. 75-85.
8. Belov P.A., Lure S.A. Teoriya idealnyx adgezionnyx vzaimodejstvij [Theory of the ideal adhesive interactions]. Mekhanika kompozitsionnykh mate-rialov i konstrukciy, 2007, vol. 13, no. 4, pp. 519-534.
9. Shorkin V.S. Nelinejnye dispersionnye svojstva vysokochastotnyh voln v gradientnoj teorii uprugosti [Nonlinear Dispersion Properties of High-Frequency Waves in the Gradient Theory of Elasticity]. Mekhanika tverdogo tela, 2011, no. 6, pp. 104-121.
10. Shorkin V.S., Frolenkova L.Yu., Azarov A.S. Uchet vliyaniya tro-jnogo vzaimodejstviya chastic sredy na poverxnostnye i adgezionnye svojstva tverdyx tel [Accounting the triple interaction influence of environment particles on superficial and adhesive properties of solids]. Materialovedenie, 2011, no. 2, pp. 2-7.
11. Sedov L.I. Mexanika sploshnoj sredy [Mechanics of continuum]. Moskow: Nauka, 1970, vol. 2, 568 p.
12. Zhirifalko L. Statisticheskaya fizika tverdogo tela [Statistical physics of solid body]. Moscow: Mir, 1975. 384 p.
13. Krivcov A.M., Krivcova N.V. Metod chastic i ego ispolzovanie v mehanike deformiruemogo tverdogo tela [Method of particles and its use in the mechanics of a deformable solid body]. Dal'nevostochnyj matematicheskij zhurnalDalnevostochnogo otdeleniya RAN, 2002, vol. 3, no. 2, pp. 254-276.
14. Azarov A. S., Shorkin V.S. Variant ucheta trojnogo potencialnogo vzaimodejstviya v sisteme mnogix chastic [The variant of triple potential interaction accounting in the many-particle system]. Issledovano v Rossii, 2009, no. 8, available at: http://zhurnal.ape.relarn.ru/articles/2009/008.pdf.
15. Kittel Ch. Vvedenie v fiziku tverdogo tela [Introduction to solid-state physics]. Moscow: Nauka, 1978. 792 p.
16. Fizicheskij enciklopedicheskij slovar [Physical encyclopedic dictionary]. Moscow: Sovetskaja enciklopediya, 1960, vol. 1, p. 19.
17. Landau L.D., Lifshic E.M. Teoreticheskaya fizika [Theoretical physics]. Moscow: Nauka, 1976, vol. 5, p. I, 584 p.
18. Kuznecov V.D. Poverxnostnaya energiya tverdyx tel [The surface energy of solids]. Moscow: Gosudarstvennoe izdatelstvo tehniko-teoretiches-koy literatury, 1954. 220 p.
19. Lejbfrid G. Mikroskopicheskaya teoriya mexanicheskix i teplovyx svojstv kristallov [A microscopic theory of the mechanical and thermal properties of crystals]. Moscow-Leningrad: Gosudarstvennoe izdatelstvo fiziko-matematicheskoj literatury, 1963, 312 p.
20. Krokston K. Fizika zhidkogo sostoyaniya. Statisticheskoe vvedenie [Physics of a liquid state. Statistical introduction]. Moskow: Mir, 1978, 400 p.
21. Gibbs Dzh.V. Termodinamika. Statisticheskaya mexanika [Thermodynamics. Statistical mechanics]. Moscow: Nauka, 1982. 584 p.
22. Vekilov Ju.H., Verner V.D., Samsonova M. B. Jelektronnaja struktura poverhnostej neperehodnyh metallov [Electron structure of surfaces of nontransition metals]. Uspehi fizicheskih nauk, 1987, vol. 151, no. 2, pp. 341-376.
23. Samsonov E.B. Svojstva elementov. Fizicheskie svojstva: spravoch-nik [Properties of elements. Physical properties: a guide]. Moscow: Metallur-giya, 1976. 600 p.
24. Magomedov M.N. O zavisimosti poverxnostnoj energii ot raz-mera i formy nanokristalla [On the dependence of the surface energy of the size and shape of the nanocrystal]. Fizika tverdogo tela, 2004, vol. 46, no. 5, pp. 924-937.
25. Rudin U. Osnovy matematicheskogo analiza [Fundamentals of mathematical analysis]. Moscow: Mir, 1976. 320 p.
26. Rusanov A.I. Fazovye ravnovesiya i poverxnostnye yavleniya [Phase Equilibria and Surface Phenomena]. Leningrad: Khimiya, 1967. 388 p.
27. Arutyunyan N.X., Manzhirov A.V., Naumov V.E. Kontaktnye zada-chi mexaniki rastushhix tel [Contact Problems in Mechanics of growing bodies]. Moscow: Nauka, 1991. 176 p.
28. Adamson A. Fizicheskaya khimiya poverkhnostej [Physical Chemistry of Surfaces]. Moscow: Mir, 1979. 568 p.
29. Vakilov A.N. Adgeziya metallov i poluprovodnikov v ramkax dielektricheskogo formalizma [Adhesion of metals and semiconductors within a dielectric formalism]. Fizika tverdogo tela, 1997, vol. 39, no. 6, pp. 964-967.
30. Koman B.P. Vnutrennie mexanicheskie napryazheniya, termodi-namicheskie i adgezionnye parametry v sisteme metallicheskij kondensat -monokristallicheskij kremnij [Internal mechanical stresses, thermodynamic and adhesion parameters in the system metal condensate - monocrystalline silicon]. Fizika tverdogo tela, 2012, vol. 54, no. 7, pp. 1335-1341.

(, ) - , - -- (302020, . , , , 29, e-mail: Larafrolenkova@yandex.ru).
(, ) - , , - -- (302020, . , , , 29, e-mail: VShor-kin@yandex.ru).
About the authors
Frolenkova Larisa Jurievna (Orel, Russian Federation) - Ph. D. in Physics and Mathematics Sciences, Ass. Professor, Department of Physics», State University-Education-Science-Production Complex (Naugorskoe shosse, 29, 302020, Orel, Russian Federation, e-mail: La-rafrolenkova@yandex.ru).
Shorkin Vladimir Sergeevich (Orel, Russian Federation) - Doctor of Physical and Mathematical Sciences, Professor, Head of Department of Physics», State University-Education-Science-Production Complex (Naugorskoe shosse, 29, 302020, Orel, Russian Federation, e-mail: VShorkin@yandex.ru).
7.02.2013